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SUMMARY

We present a series of studies on using algorithm animation to teach computer algorithms.

These studies are organised into three components: eliciting students' preferences, develop-

ing algorithm animation guidelines, and evaluating the effects of using algorithm animation

in the classroom. Many systems for creating computer animations have been designed.

These systems reflect the designers' confidence that visual representation is a valuable tech-

nique for conveying conceptual knowledge. However, little formal experimentation has been

carried out to determine whether such animations are beneficial in teaching the algorithms

presented. In addition, formal guidelines have not been developed for either design or use

of these animations. This work addresses both concerns. We found that student preference

for animation does not predict student performance on a post-test to measure learning.

We examined several types of labeling (data, steps, actions) and found a variety of effects.

One of these effects was that a text description of the algorithm increased accuracy on

conceptual questions. Also, students are more accurate on a post-test if they are allowed

to design their own data sets than if they use experimenter-defined data sets. Finally, use

of the animations was evaluated in a classroom-type setting. All students were given a

lecture on an algorithm. Adding a laboratory in which the subject controlled the animation

and data sets led to more accurate performance than a lecture only or than a lecture with

experimenter-preprepared data sets. This work has implications for the design and use

of animated algorithms in teaching computer algorithms and for the design of laboratory

experiences for beginning computer science courses.



CHAPTER I

INTRODUCTION

Modern computer techniques allow the creation of animations of programs and algorithms.

These animations provide a moving pictorial representation of the progress of the solution

to some problem. Many program or algorithm animators are convinced of the truth of that

old Chinese proverb, "A picture is worth 10,000 words." Psychological studies of learning,

memory, and problem solving also support this folk wisdom. However, folk wisdom provides

scant direction for using the new technical advances in visual presentation. Animation

is now a feasible tool for teachers. However, minimal empirical evidence supports using

animation in teaching. In particular, few studies have been done which demonstrate support

of animation for teaching algorithms and computer programming.

Research in this area continues. Various aspects of visual programming are being

investigated. Programming classes in some colleges and universities have adopted program

or algorithm animation. Although both students and faculty report satisfaction with the

use of these aids, this is a subjective measure rather than an objective one. These studies

have not proven that animation yields better learning or understanding.

Before any instructional technique is advocated, much less adopted, it must be proven

to provide educational advantage. Assertions such as "students liked the system," or that

"the system clearly provided faster learning" are not sufficient. New techniques or equip-

ment are all too readily accepted as a panacea without proof of effectiveness.

Even before testing the animation in the classroom, considerable thought must go

into the design of the animation.

Guidelines exist for the design of interfaces and for the design of graphical presen-

tations. However, the design of an animation must account for the additional complexity

of change over time. This dimension places an extra burden on the watcher's memory, to
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associate the current state of the animation with previous states. As a result, animations

have been based on intuition and which data representations are available in the system.

This research addresses the use of animated algorithms in teaching computer algo-

rithms. Three aspects of this use are considered.

"* The first is to elicit student preferences about animations.

"* The second is to validate design guidelines for animations.

"* The third is to confirm the value of these animations in teaching.

Little has been done to determine which types of animations are most effective.

Student preferences were elicited on data representations, labeling schemes, etc.

Other experiments completed in this research examined this issue of developing effective

animations. The variables included data representation, data set si e, color, data element

labels, text labels of algorithmic steps, and control mode.

Once the animation has been developed, the research must be concerned with how

the animations should be used in teaching these algorithms. An experiment of various

presentation styles for animations in teaching was conducted. There are several possible

approaches, ranging from classroom lecture examples through supervised laboratory pre-

sentations to unsupervised or discretionary use. This research compares some of these

options.

1.1 The Problem

Many researchers believe that animations should help in understanding the algorithm

through visual presentation of the algorithm in action. In spite of the researchers' intuition,

the actual value of these animations in learning algorithms has not been demonstrated.

Many studies either perform informal analysis or show little or no effect.

Three reasons for the scarcity of validating studies are the efforts necessary to design

good animations, implement the design, and use the animation appropriately in the class-

room. The second concern, implementing the design, has been the focus of much recent
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research. The last several years have seen the emergence of systems which allow the rapid

development of animations. These systems vary in level of difficulty and amount of pro-

grammer involvement. Many such systems have been presented at national meetings and

conferences.

With the development of these systems and this new technology, the other two issues,

good design and appropriate use, may now be addressed. Unlike many areas of the human

computer interface, formal design guidelines do not exist for animations. These two issues

include broad classes of knowledge such as procedural and operational learning as well as

how mappings from animation to algorithm are performed. The complexity of the issue has

discouraged researchers from formal experimentation.

These two issues are examined in three stages. The first two address design-the

first from the pcspective of user preferences, the second from the perspective of learning

performance. The third stage examines appropriate use of animations in teaching. The

variables controlled were representation of data, data set size, color, the optimal combination

of textual and visual cues, control, and presentation style in the classroom.

1.2 Contributions

The studies presented here answer many questions which have been raised about anima-

tions, but have not been previously addressed. We determine student preferences and the

relationship of preference to performance. We address design issues and the implications

of the nature of the task animated. In so doing, we develop guidelines for the design of

animations. We also address the issue of how best to use such animations for teaching

algorithms. Suggestions are made for the use of animations on teaching.

Studies such as these provide objective measures of the value of the use of these

animations rather than subjective opinions. If animations are to become part of the teaching

process for algorithms, guidelines such as the ones presented here should be used to maximize

effectiveness. In addition, the use of these animations should be done in the manner which

will optimize performance. Thus animations can be used to the best effect when they are
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added to the presentation of computer algorithms.

1.3 Overview

In Chapter 2 we present a review of relevant literature from the field. Topics covered include

advantages of pictures over text, graphical perception, labeling, visual techniques in concept

modeling, incidental learning and animation systems.

A series of experiments was run to investigate various issues with regard to algorithm

animation. These experiments used many of the same materials and methods. These are

collected into Chapter 3. The chapter also includes a description of the XTango anima-

tion environment which was used to create the animations used in the experiments. Also

described is the on-line test software developed for the series of experiments.

The experiments are divided into three stages. The first stage examined student

preferences by showing students several videotapes and animations and then eliciting their

preferences. Chapter 4 describes the first stage of the experimental sequence, preference

studies based on three representations of data in sorting algorithms. The representations

used were vertical bars, horizontal bars, and dots. In these studies students were asked

to compare and rate the various representations. The result of these studies was that

students preferred vertical bars. A formal experiment conducted to measure the effect of

these different data representations and data set sizes indicated that there was no significant

effect on performance based on representation, but that the medium data set size produced

the best mean results on the post-tests.

The second stage presents exploration of the design and task elements of the research.

Chapters 5, 6, and 7 describe experiments dealing with the design of animations. In Chapter

5, we present the results of an experiment based on the labeling of data elements. This

did not prove to be a significant factor in the design of the animations. In Chapter 6

we discuss an experiment which involved contrast of passive (observational only) use of

animations with active (user provided data). Subjects who generated examples performed

at a higher level in the learning of Kruskal's Minimum Spanning Tree Algorithm. Interactive
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use of animations proved to be a significant factor in understanding and application of the

algorithms. Chapter 7 examined algorithmic steps and color labeling as design issues.

Results indicate that monochrome displays and textual steps accompanying the algorithm

aid understanding.

The third set of experiments focused on issues of how to use the animations in

teaching algorithms. A series of small studies appear in Chapter 8. They investigated

questions of how text should be used with the animation. In this experiment, text was

a written description of the algorithm. One study concerned the order of presentation of

text and animation. Text followed by animation led to the best results. Other studies were

exploratory in nature. They involved discovery learning using the animation alone, text

alone, and text plus animation. Animations alone were found to be adequate to present

simple algorithms, but insufficient for more complex algorithms.

The guidelines and results from all the previous experiments were used to develop

animations for the final experiment. The final experiment, presented in Chapter 9, focused

on using the animations in the teaching process. Animations were used as examples to

accompany lectures, in passive laboratory sessions, and in active laboratory sessions. Use

in active laboratory sessions led to higher scores on post-tests.

Chapter 10 summarizes the results of these experiments. Guidelines are provided

for the design of animations. Suggestions are given for appropriate use of animations in

classrooms. This series of empirical studies indicates that animations can be designed to

produce maximal impact and that optimal use of these animations employs student control

of and interaction with the animation.
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CHAPTER II

REVIEW OF THE LITERATURE

2.1 Background

We conducted a series of experiments to elicit student preferences for animations, to develop

design parameters for animations, and to validate the use of animations in the classroom.

Before describing these experiments, we examine research on the use of visuals in teaching

and learning. This includes exploration of reasons supporting the use of pictures, how

visual techniques increase learning and understanding by aiding the construction of concrete

models, and the types of algorithm visualization available. We survey empirical evidence

related to the area. We discuss work in the area of instructional graphics. Finally we discuss

uncharted areas in the domain of algorithm animation.

2.2 Pictures versus Text

Few studies have been done to compare animation, which is the dynamic presentation of

visual information, to text. However, static presentation of visual information (such as

pictures and graphs) have well documented advantages over text. The following list is only

an abbreviated selection of facts and studies which demonstrate the superiority of pictures

over text for basic perceptual and cognitive tasks.

2.2.1 Advantages of Pictures

1. The content of a picture can be understood much more rapidly than the content of a

text segment 129].

2. The human visual system is very powerful. It processes images with both speed and

accuracy. Graphical techniques allow the involvement of this system in the learning
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process [10].

3. Concept learning may take place without the use of text. This is illustrated by concept

formation in prelinguistic children described by Piaget as cited by Baggett [7].

4. Pictures are remembered better than words. This result lays a foundation for the use

of graphical techniques in teaching.

5. Mayer [37] suggests that students learn more from text coupled with illustrations

than from text without illustrations. Students learning high school physics concepts

recalled much more of the conceptual information and solved more of the transfer

problems when provided with a diagram model.

6. The graphical approach may encourage attention to aspects of a program that other-

wise might go unnoticed [12].

7. Data indicates that animated visuals may enhance initial encoding and subsequent

retrieval [49].

8. Informal experiments have been done to determine if graphical representations in-

crease insight and understanding. These experiments indicate that a visual represen-

tation definitely increases comprehension. Commercial systems such as spreadsheet

programs indicate that visualizatior of the process leads to potential success and

reduces user anxiety [6].

9. Myers [38] suggests that graphics should be used because graphics lend themselves

to a higher-level description of the actions desired. This can be accompanied by

less emphasis on syntax at a higher level of abstraction. Thus a graphical system

may provide information which can aid in understanding of the current state. In

addition, programming languages can be difficult to learn. Graphical systems allow

the complex content to be demonstrated without requiring possession of all the skills

of the language involved.
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solvers who use an external representation in the problem solution. They are search,

recognition, and inference. Visual representations can carry much of the inferential

knowledge.

11. Cunniff and Taylor [20] conducted studies involving program comprehension by novice

programmers. Their results with FPL (a graphical representation similar toflowcharts)

indicated that speed was enhanced by the use of the graphical representation.

12. Allen [1] found that having a visual representation of a programming language in-

creased programming accuracy in a visual programming environment.

2.2.2 Disadvantages of Pictures

Pictures alone are not sufficient for conveying all concepts. Baggett [7] stresses that the cor-

rect mix of visual and verbal information is essential for maximum effectiveness. Her studies

indicate that visual material creates a more varied association net in memory of already

learned concepts. She suggests that visual material be used to provide more information

about concepts which already have been learned. Verbal information is used to assure that

the correct connections are made with the visual presentation. This implies that the ideal

animation may require text or verbal additions to aid in forming the concepts desired.

The question arises as to whether certain features of information may be best pre-

sented by graphics or by text. Feiner and McKeown [221 suggest that abstract information

and rationale should be represented by text, while actions and location as well as physical

attributes should be represented by graphics.

Two possible types of information that could be included in the animation are the

steps in the algorithm and the state of the data structure. Applying Feiner's suggestion

to the design of animated computer algorithms would suggest that conceptual steps of an

algorithm should be text labeled while actions taking place on the data structures would

be represented in a graphical manner.

Another problem with pictorial learning aids is that they may lead to misconceptions.
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This is demonstrated with transfer tasks. "Transfer tasks are often used to test the ability

of the learner to extract basic principles from the task or examples used in learning. A

frequently cited example [24] of this type of task is the problem on the General who must

attack a city that may be entered by several roads, but is unable to send a large force along

any road. This problem is transferred to a medical dilemma where a X-ray dosage large

enough to destroy a tumor will also kill the patient if delivered to one spot.

Ross [52] stressed that similarities between the original problems and the transfer

tasks be based on structural and not superficial similarities.

Another challenge for designing animations is that incidental learning may be in-

creased. In contrast most teaching is aimed at intentional learning (learning of a presented

concept or process). Unfortunately graphic aids can unintentionally reinforce superficial

similarities. Rieber [46] observed that students were able to acquire understanding of inci-

dental information without decreasing intentional learning. His experiments demonstrated

that incidental learning was higher with animation than with static graphics. Unfortunately,

this incidental learning also led to misconceptions, for example they developed incorrect ex-

tensions of the principle of the effects of gravity when viewing a gravity-free animation. In

general incidental learning may be detrimental, in that it may interfere with intentional

learning. On the other hand, it may be helpful in that general principles are learned which

may be applied to several related problem situations.

2.3 Design of Pictures

To obtain the maximum benefit of graphics at the minimum cost requires pictorial design

based on principles of graphical perception. Graphical perception may be defined as the

"visual decoding of information encoded in graphs" Choosing the appropriate encoding of

the information can be difficult. Recently, Tufte [62] has been a leader in pointing out

many bad practices in graphing. Cleveland and McGill [19] have been active in practical

experimentation in the area of graphical perception.

The design of graphs and other non-textual aids in presenting data is a complex area
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which has received considerable attention in recent years. It is generally believed that the

format of the data affects the ease and accuracy of decoding the information which the

graph represents. Although this debate has raged for over 100 years, recently there has

been an upsurge in formal experiments on the presentation of scientific data. Practitioners

of the field have often relied upon intuition and experience to determine the best form for

presenting a particular collection of data.

The domain of graphing scientific data includes research on the efficacy of a certain

design style for particular data. Mackinlay [33] points out that a graphical presentation

must meet both expressiveness (expressing the desired information) criteria and effectiveness

criteria (which representation is best at maximizing the capabilities of the computer system

and the human visual system). Graphical presentations use graphical marks, including

points, lines, and areas, to encode the desired information.

Preece [43] discusses some issues in the domain of displaying quantitative information

graphically. She points out that how the data will be interpreted by the user is more

important than semantic correctness.

Through experiments, Cleveland and McGill [19] have developed a hierarchy of the

elementary perceptual tasks in graphical perception, based upon accuracy in experimental

situations.

The hierarchy of discrimination tasks from highest accuracy to lowest accuracy is:

1. Position along a common scale

2. Position along nonaligned scales

3. Length

4. Direction, angle

5. Area

6. Volume, curvature

7. Shading, color saturation
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So for instance, they found that the human eye is able to differentiate position more

easily than length and length more easily than direction and angle. Application of these

results can be used to help determine the representation of data for a particular task.

Using the most accurately judged form will increase the chances of a correct perception.

For example, bar charts are preferred to pie charts since this replaces angle judgments by

position judgements.

In addition to selecting the best method to be used in representing data, identifica-

tions may be aided by texture, color, labels, and other cues such as position in the scene.

However, experiments have shown that the primary recognition is line based [9]. That is,

the lines which make up a figure or graph are the key to deciphering its meaning.

Wickens and Andre [66] point out that color can aid grouping of objects, but slows

down focused attention tasks. Integration performance is also slower with colored objects.

When an object is to be separated from the group, color cues aid attention.

The application of these findings to algorithm animation seems to indicate that data

judgments would be best made based on position along a common scale or identical but

non-aligned scales or length. Representing data size as a pie segment or sloped line or an

area would be second choice. Color contrast could be useful in singling out some object to

be noticed in the process of the algorithm, but should not be overused because this would

slow down the focused attention.

Sparrow [54] points out that the form of the presentation can influence the recall

of information. Studies done in designing icons indicate that the type of representation is

a significant factor in the ease of understanding the concept represented [32]. Although

common practices in style and method of representing data have arisen, neither a body

of formal experimentation, nor the subsequent formal guidelines have been created. Such

formal experiments must be done before any particular representation can be adopted and

accepted.
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2.3.1 Influence of Labeling

A recurrent theme in the problem solving literature is that the more salient is the infor-

mation derived from the example, the better are the problem solving results. An obvious

method for increasing salience is to label or highlight important features.

The influence of labeling in problem solving has a long history. One often cited

example is Duncker's traditional candle problem in which a box of thumbtacks and a candle

are given to a problem solver. The problem is to attach the candle to the wall in such

a position as to allow it to burn. This problem is more easily solved when the box of

thumbtacks is labeled "box." Students given this problem with the labels are more likely

to discover that the box can be thumb-tacked to the wall and used as a base upon which

to set the candle [25].

Catrambone and Holyoak [18] note that emphasizing structural features of a problem

and labeling subgoals aid the transfer of the problem solving technique to new problems.

Ross also (51] emphasizes the necessity of distinguishing the critical features in some manner

in order to extract the right information from examples for later problem solving. Much

of the psychology based literature refers to labeling as the inclusion of textual names or

descriptions, but Maguire [34] summarizes a body of research which stresses other types of

cues such as highlighting, shape coding, color coding, and blinking.

2.3.2 Use of Visual Techniques in Concept Modeling

Modeling new concepts can increase learning and understanding. At the higher, conceptual

level, visual information can aid in learning and understanding abstract concepts. It has

been demonstrated that using concrete models was helpful in learning technical or unfamiliar

material and aided transfer to new situations. Visual models used in LOGO and BASIC

computer models supported this result especially for transfer problems. Visual models in

the area of physics have also been found to increase concept acquisition [37].

Visual techniques aid in the construction of concrete models. Mayer [37] suggests

that key factors in measuring the effectiveness of model usage are learner characteristics,
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material to be learned, instructional method and learning outcome performance. Models

must be coherent, concrete, conceptual, correct and considerate to be effective [361.

2.3.3 Instructional Graphics

Many studies have been done in the area of illustrated text. Weidermann [64] reminds

us that Levie and Lentz reviewed forty-eight experimental studies with the results being

overwhelming in favor of illustrated text. Thus pictures with text can help to facilitate

learning and retention. This result has been demonstrated for varied tasks and learners. He

cites Duchastel's 1978 [21] statement of the three roles of pictures being: (1) Pictures can

attract the learner's attention; (2) Pictures can help the reader to understand information

that is hard to describe in verbal terms; and (3) Pictures can reduce the likelihood that

acquired information is forgotten, perhaps as a consequence of an additional encoding in

pictorial memory.

Designers of instructional graphics, such as charts, diagrams, and graphs, must con-

sider the method of instruction, expected outcomes, and the conditions under which instruc-

tion is to take place. Winn [68] reminds us that different graphical forms convey different

meanings. Two basic functions of graphics are to simpy the complex, and to make the ab-

stract more concrete. The best design carries out these functions. An important component

of the best design is the correct representation of the data. Winn stresses that representa-

tion effects the meaning of the graphic. Such representation may be through verbal labels,

drawings, or symbols. Some graphics have conventions, such as those in graphs which arise

from mathematical usage setting larger values at the top for the Y values and on the right

hand side for the X values. Winn also notes that mental models of conceptual domains in

science can be developed by using graphics[67]. Such strategies may be taken into account

when designing animations in order to help build concrete mental concepts. For example,

it would be counter-intuitive to design an animation in which values of the array grew in

value from right to left on a line which resembled a graphical X axis. Another example is

that arrows can be used to focus attention. The concept to be conveyed must effect how
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the animation is constructed and presented.

A computerized instructional application must be well-designed to succeed [44].

Rambally and Rambally stress the need for more guidelines to guide the design of the

computer interface for computer assisted instruction. Rambally and Rambally provide some

general guidelines for design of such computer assisted instructional materials. Among these

are clearly organized easy to understand screen designs, material of an appropriate level,

highlighting of important information, avoiding clutter, and effective use of color, shape and

size codings. In designing the XTango animations, these guidelines were considered. The

concepts of visual coding and highlighting were used in these designs. These guidelines will

help in the preparation of software to be used in instruction, but evaluation is also essential.

Palmiter [41] gives empirical evidence that animated demonstrations are best com-

bined with non-redundant text. She cites studies in which such combinations have proven

more effective than animated demonstrations alone or text alone for immediate and delayed

tasks. Novice users find such demonstrations more effective than the long term or expert

user. Thus, the animations should be created with the eventual user in mind. Such anima-

tions are best, she states, for graphical tasks which are not highly complex. Palmiter also

reports user preference for animation demonstrations over text.

2.4 Visualization

Animation may be formally defined as "the rapid sequential display of pictures or images,

with the pictures changing gradually over time" [60]. Animation therefore presents an extra

dimension for design beyond that of static graphics. As a result, previous research in graphic

design has limited applicability. The previous research gives very general guidelines for

design. It also suggests some directions in which animation could successfully be employed.

These results must be carefully interpreted in view of the unique opportunities animation

provides.

One important decision must be the content of the animation. Several researchers

have attempted to characterize and analyze the types of visualization which can be pre-
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sented. Myers [38] presents the categories of visual programming, programming by example,

and program visualization. On the other hand, Stasko and Patterson [60] present the cate-

gories of data structure display, program state visualization, program animation, algorithm

visualization, and algorithm animation. Baecker [6] defines program visualization as "the

use of the technology of interactive graphics and the crafts of graphic design, typography,

animation and cinematography to enhance the presentation and understanding of computer

programs. Program visualization is related to but distinct from the discipline of visual pro-

gramming which is the use of various two-dimensional or diagrammatic notations in the

programming process" [12]. This research deals with the area of algorithm animation,

which may be described as a form of program visualization.

2.4.1 Systems using Animation

Several systems have been developed which employ animation techniques in teaching com-

puter science. These systems vary in the degree of control given to the user and to the

designer of the animation.

"* Often cited is Baecker and Sherman's [5] film "Sorting Out Sorting", shown at SIG-

GRAPH '81, which is an early example of algorithm visualization.

" Bocker, Fischer and Nieper [101 developed a system (KAESTLE) which is intended to

aid understanding of LISP through visualization of data structures and the dynamic

behavior of a running program.

"* Brown and Sedgewick [17, 16, 121 developed the Balsa system for algorithm analysis.

Brown University used the system in computer science classes including introductory

programming, data structures, and graphics. The successor system, Balsa-H, allows

the user to adapt his/her view of the animation. Users may execute in single step, ad-

just window size, zoom in and out, and modify the data representation. For example,

in a sort the elements may be shown as "sticks" or as "dots." The authors contend

that a single view may not be best for all algorithms, but also believe that a view

should be flexible enough to be used for several algorithms. The environment allows
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an investigation of the "dynamic behavior of programs." It is essential that updates

be done rapidly.

"* Marc Brown [13, 14, 15] developed the Zeus algorithm animation system which allows

the user to control the data, the type of views, and algorithm execution. It allows

for "interesting events" to be identified and supplied with parameters. This system

incorporates objects, strong-typing, parallelism, and graphical development of views.

It also allows the use of color and sound in the animation of parallel algorithms.

"• Stasko's Tango system [56, 58] allows the ready development of animated visualiza-

tions of computer programs. Because computer programs may be difficult to interpret

in their usual textual format, an animated graphical presentation of the program may

aid interpretation of the program's purpose and meaning. Animated views aid in un-

derstanding programs, evaluating existing programs, and developing new programs.

The Tango system allows animation of various programs without requiring a differ-

ent animation routine for each program. Programs in sorting, searching, graph and

tree manipulations, and classic problems such as the Towers of Hanoi and producer-

consumer ring buffer have been animated.

"• Vanneste and Olivie [63] developed an intelligent environment for learning Pascal

programming. This system allows the student to visualize the process of execution,

and in so doing observe the effect of the algorithm.

"* The ALADDIN (ALgorithm Animation Design and Description using InteractioN)

system [27] allows the creation of animations of algorithms. The graphics are designed

interactively with a graphical editor. An arbitrary algorithm written in Modula-2 can

be demonstrated as an animation without the user having to program the graphics

or other parts of the animation. The user controls the appearance of the algorithm.

Objects are specified graphically by the user.

A related area is that of data structure presentation or animation. Graphical displays

of data structures were presented as early as 1980 by Myers in the INCENSE system [401.
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Baskerville's GDBX [8] extends this idea. While stressing the importance of data structures

as fundamental to designing or understanding a program, GBDX integrates the display

of data structures into a debugger. It also allows user control over the data structures

presented, including such things as scrolling an array. Individualization of use is possible,

providing a customized user environment.

2.4.2 Empirical Research

Although developers of algorithm systems are convinced of the value of animation systems,

little actual experimentation has been done to measure the efficacy of teaching computer

algorithms and concepts using an algorithm animation system. Studies have been car-

ried out in some related areas such as solving algebra problems, programming, teaching

computer-based tasks. teaching science, and teaching computer science. Results have been

mixed.

Early studies using animated displays in solving algebra problems by Reed [45] in-

dicated that an external lesson strategy was necessary. It was not sufficient to simply show

the animated display. Combining the animation with an external lesson strategy focused

attention on the pertinent features of the animated display.

Use of animation has not always proved instructionally effective. Rieber [49] study

used animated visuals embedded in a lesson about Newton's Laws of Motion. No effect was

shown for animation. A later related study [48] did show an advantage for the animation

group over static and no graphic groups. However, this was linked to practice rather than

to the type of visual aid. Rieber, Boyce and Assad [47] examined the effects of different

levels of visual elaboration on adults learning a computer based science lesson. They found

no significant differences.

An observational study by Badre, Beranek, Morris and Stasko [3, 4] indicated that

students found algorithm animation valuable when used in conjunction with a computer

science class.

Animations are also being used in the teaching of computer-based tasks. Palmiter
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and Elkerton [42] compared animated demonstrations to written instructions. Results in-

dicated that training took longer for written instructions, and scores on the immediate test

were higher for the animated demonstration group. In contrast, the textual group per-

formed faster in the delayed test. Correctness was better for the animation group during

training, equivalent during the immediate test, and lower during the delayed test. One pos-

sible explanation for this is that the demonstration group used mimicking during training

and the immediate test and did not encode the information as redundantly as the textual

group.

In a second experiment, Palmiter and Elkerton [42] used animated demonstrations to

help users learn about direct manipulation interfaces. Because users often fail to read writ-
ten instructions or find them difficult, the experimenters felt that animated demonstrations

would be helpful. These demonstrations skip the referential step needed to comprehend

text while providing an immediate link between input and response. Palmiter and Elkerton

taught subjects a variety of HyperCard authoring tasks using demonstration only, spoken

text only, or demonstration and spoken text. Results indicated that the demonstration

groups enjoyed their instructions more than the spoken text only group. During the train-

ing session, the demonstration groups were faster and more accurate; however, after a seven

day delay the spoken text-only group was faster. Thus the best liked type of instructions

did not yield the highest retention.

Stasko, Badre, and Lewis [57] present empirical study of the use of algorithm ani-

mations in teaching an algorithm involving the pairing heap data structure. Students in

a text-only group were compared to students in a text-animation group. Although there

was no significant difference in results on the post-test, the animation students felt the

animation was a help in understanding the algorithm. Some also requested explanations to

accompany the animation. The authors discuss the importance of providing a more active

learning experience for the novice student, perhaps by allowing the student to construct an

animation. They also suggest that optimal use of animations requires the student to un-

derstand both the algorithm and the mapping from the abstract computational algorithm
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domain to the computer graphics animation domain used to present the algorithm.

Whitney and Urquhart [65] integrated computers into two courses at San Diego State

University. In an algorithms course, normally a difficult course for students, MacBalsa

(by Marc Brown) and AL (Algorithms Lab, Roger Whitney) were used. MacBalsa is an

algorithm animation program. AL provided a timer, plotter, and least squares fitter to be

used in the study of algorithms. Results were disappointing in that computer usage seemed

to widen the gap between the strong students and the weaker students. This is attributed

to the large cognitive load the computer placed on the weaker students.

Overall these studies show that animation used in conjunction with other aids or

materials provides the learning and retention. Further studies are needed to determine

when to use animations, the best format for the inclusion of animated algorithms in the

curriculum, and the best representation for the data involved. A clear comparison of tradi-

tional teaching methods to teaching with the aid of algorithm animation is needed to lend

support to the use of animated algorithms in teaching computer science. So far there is

little evidence that animation helps learning. Before animations are developed for use in

teaching algorithms, there must be statistical evidence of the value of this use.

2.5 Open Questions

Visualization alone is not enough. Presenting a visual representation of information does

not guarantee that there will be successful human-computer communication. Semantic qual-

ities may be omitted [35]. Brandenburg [11] states that the question of optimal graphics

is NP •:oi•zplete, that is, calculating the best drawing is extremely expensive in a computa-

tion sense. There are many levels of abstraction and many possibilities to be considered.

Research on the static presentation of data may offer some hints toward optimizing the

presentation of animated algorithms [11t.

Much progress has been made in providing systems and techniques which allow

visualization of computer algorithms. Many researchers agree that the state of the art,

while much advanced over the past few years, still has unanswered questions.
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"* Modifications of or access to data structures are not necessarily the same as algorithm

operations. It is unclear which of these should be represented by the animation.

"* Real-time performance may be difficult to provide due to hardware restrictions, com-

plexity of the algorithm, and size of the data.

"* Displays need detailed information about run time activities which may necessitate

limitations in parameters and data sets [12].

"* No one knows what a "nice layout" really is in this domain [61.

"* This area is a new paradigm. Issues include the fact that it is difficult to specify what

the data animation should look like and the question of at what points to update (39].

"* Experts in the area note that design principles are needed. Agreement has not been

reached on what is best in many aspects of animation visualization [6]. For graphs,

Tufte (621 provided detailed design criteria and Maekinky 1331 automated the selec-

tion of representation and format. However, no equivalent work has been done for

animation.

"* Stasko [56] suggests that a need exists for a systematic approach to the use of animated

algorithms.

In short, the best way to implement algorithm animation is unknown. Important issues are

screen layout and representation of data, speed and amount of data to be used, and how

often to provide update. Also important are questions of color, textual cues, accompanying

textual explanations, and user control of the animation.

These questions of format and design are critical. Another key question is this:

How much does the use of these techniques improve the learning and understanding of

computer algorithms? Although both instructors and students have commented positively

upon the use of animated algorithms, not everyone agrees that these techniques have a

positive effect on performance. It would be comfortable to assume that algorithm animation

is a positive influence upon the teaching of computer based algorithms. However, empirical
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experimentation must be done to determine if animated algorithms are superior to standard

teaching techniques.

In studying the use of these animations, it is also critical to investigate the user

preferences, the effects of various representations and designs on performance, and the

appropriate integration of animations into the classroom. All of these areas of concern were

addressed in this research.

The first series of experiments dealt with student preferences. Two studies were

carried out to elicit student suggestions and rankings of representations. These preferences

concerned data representation, data labeling, text commentary, and other factors. Students

preferences were compared to student performance in the next experiment. Unlike many

areas of the human computer interface, formal guidelines do not exist to determine the

best representation of data or the best data set size to use for maximum comprehension.

Representation of a problem has long been recognized as extremely important to problem

solution. Larkin and Simon [31] suggest that the key to solving a problem is to represent it

correctly.

The scope of the problem as well as what features are to be stressed affect the best

representation to use for graphical presentations of data. Position values are best expressed

by dots, while length values may be better expressed by lines [33]. Work by Robertson

[50] indicates that vertically stacked surfaces can show global correlation while horizontally

aligned surfaces can show correlations in point values between individual values. Robertson

[50] suggests a small data set size is best for introducing new concepts while a larger data

set size is helpful for developing intuitive understanding of an algorithm's behavior.

The second series of experiments dealt with the questions of animated algorithm

guidelines - they explored questions of speed, control, data set size, and representation.

The results of these studies were used to prepare the version of the algorithm animation to

test the advantages of incorporating the animated algorithms into the actual learning and

comprehension of these algorithms.

The third area of concern was a formal comparison of the visual animation algorithm



22

systems and the "old-fashioned" or traditional way of teaching with teacher drawn sketches

or or verbal descriptions. If animation is to be used, it must be integrated into the learning

process. Various combinations of animation/no-animation and use of animations in lecture

and/or laboratory can be studied. The third set of experiments dealt with this comparison.
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CHAPTER III

MATERIALS AND METHODOLOGY

3.1 Introduction

The series of experiments presented in this research focus on various features of animations

and on methods of using these animations in teaching computer algorithms. For simplicity

of reference and to reduce redundancy, this chapter describes some of the methods and

materials used. In particular, the subjects, basic experimental procedure, independent

variables, dependant variables, and software are detailed.

3.2 Subjects

Subjects were student volunteers who received class credit for their participation in the

experiment. Students from the Georgia State University were involved in the first two

preference studies. Other subjects were students at the Georgia Institute of Technology.

These students were engineering majors or computer science majors. They were selected

because they represent a target audience for animations of this type since the classes they

take require them to master many algorithms in the course of a quarter. Generally, if a

mastery post-test was involved, the students had not been exposed to the algorithm in

question beforehand.

3.3 Description of General Experiment

Experiments in this sequence generally involved individual sessions with students. These

students were subjects in lower-division courses in Computer Science at the Georgia Insti-

tute of Technology. Students received class credit for participation in the experiments. In

general, these sessions lasted for about one hour. The experimenter read a general descrip-
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tion of the experiment. Subjects signed a consent form and filled out a brief demographic

survey. A pretest was given to determine if prior knowledge affected scores.

Students were assigned randomly to cells in the experiment to prevent order affects.

Generally, the student viewed animations of one or more algorithms. This was followed by a

post-test designed to check understanding and application of the algorithm presented. Dur-

ing the early experiments students were asked for suggestions on improving the animations.

These suggestions were used in selecting factors for later experiments.

The consent form appears in Appendix A. The preference survey used in the early

studies appears in Appendix B.

Sample algorithm descriptions of Quick Sort and Selection Sort may be found in

Appendix C and Appendix F. A sample of the pre-tests used is found in Appendix E, while

samples of the post-tests used appear in Appendices D, G, I, J, K, and L.

3.3.1 Independent Variables

Variables which have been considered in this sequence are representation of data, data set

size, color, labels of data elements and of algorithmic steps, interaction with the animation,

and complexity of algorithms.

Experiments completed in this research involved several variables:

1. Algorithms

The domains of sorting and graph algorithms were chosen for this sequence of exper-

iments. Since there are many approaches to sorting and these approaches differ in

complexity, this domain provides the opportunity to test the algorithm visualizations

under varied conditions while maintaining a continuity of purpose. These algorithms

differ in complexity with the majority requiring O(n 2) or O(nlog n).

Because each algorithm has its own unique features, the animations must vary and the

effectiveness of the animation in demonstrating the algorithm may be more for one

than for another. To provide a different comparative approach a minimum spanning

tree algorithm from the domain of graph problems [30] was also used. This issue is
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examined in more detail in a separate section.

2. Data Set Size

Data set size was tested since it was unclear what was the optimal size of data set

sufficient to prove the point without outlasting student interest. Small, medium, and

large data sets were used.

3. Data Representation

The XTango system allows varied representations of data such as vertical bars, hor-

izontal bars, and dots. These representations were examined to determine both stu-

dents preference and which representation contributed to best performance.

4. Color

Color can be used to focus attention and to aid grouping of objects. Studies have

shown, however, that color may be a distractor in some situations and result in slower

task completion. Color as an action cue was examined to determine whether it served

as an aid or as a distractor in the XTango animations.

5. Data Labels

Labels were investigated in two ways, as labels on the data itself and as textual labels

which described the algorithmic steps. Labels on the data elements represent relative

values.

6. Algorithmic Text Labels Textual labels were phrases which could be highlighted

as that particular portion of the algorithm was carried out. They describe

7. Interaction Mode

Interaction mode may be demonstration only or it may involve student interaction

in selecting such variables as how many times the animation is shown and what the

actual members of the data set are to be. Two experiments examined the question
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of how interaction impacts on learning. This is an issue concerning control of and

involvement in the learning process.

3.3.2 Dependent Variables

In general, the dependent variables in the experimental sequence were speed and accuracy

on the post-test. In addition to these measures, student preference measures were taken to

measure the attitudes of the subjects. Pretests of background knowledge were treated as

covariates in the experiments.

3.4 XTango

The XTango animation package 1591, was used to create the animations used in these studies

and experiments. This software, developed by Dr. John Stasko, allows the creation of

animations through XTango calls within a C program. It implements the path transition

animation framework which he designed 1581. (XTANGO = X-window Transition-based

ANimation GeneratiOn.) The animator can select the style of data representation. Basic

images in the package are lines, rectangles, circles, ellipses, polylines, polygons, splines,

bitmaps, text and compositions. The software also allows the use of numbers and text

to accompany any data structures represented. XTango calls also allow highlighting and

exchange of elements as well as the insertion of line style changes and color changes in the

animations.

The XTango system can present a program in animated form in order to facilitate

meaning and purpose. Animations are developed by first creating the graphical objects

used to represent the data. These are created as images which may change in size, location,

visibility, fill, or color as the animation progresses. Paths and transitions allow these changes

to occur. An algorithm is mapped to the images and transitions by the use of an animation

scene file.

In order to build an animation the animator should determine the algorithm oper-

ations to be demonstrated, add these operations to the source code file as XTango calls,
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design the animation scenes to be used, and create the necessary linkages from operations

to scenes.

XTango is available by anonymous ftp [551. Some of the animations used in these

experiments may be found in the subdirectory hLstudies.

3.5 Algorithms

Several algorithms were used in the experimental sequence. The first experiments were

based on sorting algorithms. These algorithms were chosen because they are a basic of

computer algorithm study. Many versions of the sorting algorithms exist and they present

a varied range of difficulty. Information is often placed in alphabetical or numerical order

to aid a reader in locating a target value. Because sorting has been widely studied by

computer scientists, many techniques are available.

Later experiments were based on the Kruskal Minimum Spanning Tree algorithm.

This algorithm was selected because graph algorithms form another important subclass

of computer algorithms. In addition, this algorithm, unlike sorting which carries with it

some intuitive knowledge gained from everyday experience, is generally unfamiliar to the

participants. Thus, the experimental exposure provides the first contact with the concepts

of the algorithm and the effects of the experiment can be more precisely judged. In addition,

this algorithm manipulates a spatial two dimensional entity. Animations may have different

effects on two dimensional objects than on the inherently one dimensional list of numbers.

This algorithm is often presented in computer science classes which deal with algorithm

analysis.

Kruskal's Minimum Spanning Tree Algorithm is applied to a weighted graph. In

a weighted graph, weights are assigned to each edge to represent distances or costs. A

minimum spanning tree of a weighted graph consists of

"* a collection of edges,

"* these edges connect all the vertices, and
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* the combined weight of these edges is the minimum possible.

Kruskal's Algorithm for finding the minimum spanning tree of a graph proceeds in this

manner:

1. First sort the edges by weight.

2. Select the shortest edge. Add it to the minimum spanning tree.

3. Select the next edge. Test to see if a cycle is formed. If no cycle is found, add the

edge to the MST. Otherwise continue with the next edge.

4. Repeat step 3 until all nodes awe connected by the minimum spanning tree.

3.6 Testing Software

In house testing software was developed for this experimental sequence. Using the X Win-

dow System and the Motif Widget Library, the software included an introductory screen

giving instructions for use. Each successive screen presented one question and a set of pos-

sible answers. Answers were selected by use of a mouse. The mouse also controlled progress

to the next question. This software allowed the subject to interact with the computer in en-

tering answers to multiple choice or true/false format questions. The software recorded both

answers and times for the post-test. This increased the efficiency of the analysis procedure

and ensured no reaction of the experimenter to correct or incorrect responses.

A sample screen from the testing software appears in Figure 3.1.

Students were able to change answers while within the question, but were unable

to return to a question once they had progressed beyond it. Each survey was designed to

include questions which dealt with how to begin application of the algorithm, selecting the

next step in the algorithm, concluding the algorithm, and key concepts of the algorithm.

In some of the experiments, a background process recorded the data sets subjects

used. In addition, the process prompted the students to type in their reasons for selecting

a particular data set for the animation. These answers were studied to try to understand

how the animation aided the concept formation process.
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Figure 3.1: Testing Software Screen



30

3.7 Test Development

In order to be sure of the efficacy of a teaching intervention, we must find a means of

measuring the learning and understanding which takes place. Anderson and Draper [2] argue

that only the observations of real teachers in real classrooms have ecological validity. An

alternative approach is to use pre and post-tests, along with formal experiments with control

groups. Some evaluation measures are behavioral measures such as time to completion and

error rate. Observation may be predetermined (such as time) or open-ended to allow for

unexpected events.

Even when the method of measurement is ascertained, difficulties remain. The cor-

rect instrument must be selected. Selecting a question for a post-test is easy. However,

designing a question to measure understanding is not so simple. One generally accepted

method is to ask the learner to demonstrate measurable behavior designed to show achieve-

ment of a particular learning objective. Thus, behavioral objectives must be listed before

the test is composed. Secondly, it is important that alternative presentations of the exper-

imental material convey the same information. A third problem is analysis. Analysis must

be planned to consider varied results such as performance and preference data as well as

any covariates that can be determined.

These considerations point out the difficulty in asserting the value of the use of

algorithm animation in the computer science classroom. Several measures must be gathered

and more than one experiment must be run in order to overcome the obstacles and achieve

convergent validity.

Several things were done to ensure that the tests would be appropriate for measuring

understanding and application of the algorithm. Textbooks of the appropriate level were

consulted for sample question format [53, 281. Learning objectives were stated in behavioral

form so that the questions would address key issues of the algorithm. A combination of

format of question style was selected in order to provide a clear picture of learning. Multiple

choice, true/false, short answer, and questions requiring the working out of the entire process

of the algorithm were included. Questions were referred by college teachers of computer
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algorithms courses.

Early experiments concentrated on a few on-line questions followed by opportunity

for comment and a chance to work out one example of the algorithm. Later tests included a

wider variety of test questions with more opportunity for short answer, working out of the

entire algorithm, and free response answers. It was felt that this variety approach would

allow a clearer picture of the knowledge level of the student. Some questions were designed

to deal with procedural level topics while others were aimed at the operational level.

Pre-tests were used in several experiments. This was done in case the effect of prior

knowledge would effect results. Pre-tests were based in the case of the sorting algorithm

on basic concepts of following algorithmic processes. Pre-tests for the Kruskal Minumum

Spanning Tree Algorithm were based on some basic graphic concepts and definitions [26].
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CHAPTER IV

ESTABLISHING STUDENT PREFERENCES

A.1 Introduction

In our study of the use of animated algorithms, the first step was to establish student

preferences and to determine whether these preferences match performance results. This

chapter presents three related studies which examine the issue of student preference and data

representation. Representations which are used are vertical bars, horizontal bars, and dots.

The XTango algorithm animation package allows the selection of various representations of

data which may be used to represent the same algorithmic procedure.

The elements on the screen represent data inputs. There are three representation

of the data inputs, Vertical Bar, Dots, and Horizontal Bar. These versions are shown in

Figure 4.1, Vertical Bar, Figure 4.2, Dots, and Figure 4.3, Horizontal Bar. For the Vertical

Bar and Dot representations, the Y orientation displays the magnitude of the elements. For

both bars, there is an extra cue for magnitude, the length of the bar. The Dot, however,

only has one cue for magnitude, its height above the X-axis. The X dimension represents

the current position in the array of numbers. For the Horizontal Bar representation, the X

and Y indications are reversed. A change in array position is indicated by the movement of

the element.

The first two studies sought to establish students preferences in terms of data rep-

resentation and data labeling. The first study exposed students to three different data

representations of the Quick Sort algorithm and gathered rankings of factors including clar-

ity and best data representation. In the second study, twenty-one different views of Quick

Sort were ranked by individuals. The third study was a formal experiment which investi-

gated whether student preferences for a data set representation match performance. Data
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Figure 4.1: Quick Sort, Vertical Bar, Large Data Set
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set size was also examined in this experiment.

The task of research in the use of algorithm animations began with exploring stu-

dent preferences. We also elicited students' insights on improving animations. Once these

preferences were determined, we tested them to ascertain if they indeed resulted in more

learning.

An informal study by Badre et. al [3] indicated indicated that students preferred the

bar representations of data, while teachers tended to prefer the dot style of data represen-

tation. These teachers felt that the dot gave a better overall picture of the workings of the

algorithm.

4.2 Exploratory Preference Study

4.2.1 Introduction

The focus of this study was to determine which of three representations was preferred by

students in terms of speed, clarity, data representation, overall visual impact, best for new

student, and other features. This was to be a comparative preference since each student

would see all three versions.

4.2.2 Design

This was a 1 x 3 within subject design. The independent variable was data representation

with three levels vertical, horizontal, and dot. Each group viewed all three representations

but in a different order. Order was selected in a Latin Square method. All possible orders

were not selected, but each representation appear first, last, and in the middle once. (VED,

DVH, HDV).

4.2.3 Subjects

Thirty-five students in a Computer Architecture class at the Georgia State University par-

ticipated in the first study. These students were volunteers.
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4.2.4 Materials

Three video tapes were prepared showing the Quick Sort algorithm in various representa-

tions. Each tape contained three representations. These tapes were recordings of a screen

display of the XTango animations. Color and labels were not included in order to concen-

trate more fully upon the representation. The only value representation was height, width,

or distance from the Y axis. Exchange of elements was visually indicated by the pair of

elements traveling along curved paths from old to new location. The pivot element was

represented as filled. When sorting was completed, the Vertical Bars were represented with

the smallest in magnitude to the left of the screen, rising in height to the largest at the right

of the screen. The Dot representation formed a slanting line from lower left to upper right

of the screen. With the Horisontal Bars, the sorted array appeared as a pyramid, with the

smallest element forming the top of the pyramid.

The Quick Sort algorithm was chosen because it was somewhat more difficult than

some basic algorithms which might have been taught in high school. Students in the class

had been taught sorting methods in a previous Data Structures course.

4.2.5 Procedure

The class met in classrooms where equipment permitted the videotape to be shown on

a large screen. Each student was randomly assigned to one of three groups, Vertical-

Horizontal-Dot, Dot-Vertical-Horizontal, and Horizontal-Dot-Vertical. Each group viewed

three representations of the data shown on a prepared videotape.

Students had been taught the Quick Sort algorithm in a previous class, and were

given a handout (see Appendix C) to review the process before viewing the animations.

They were told that the animation would be of the Quick Sort process, but were given

no information as to how the data would be represented or how the modeling would be

carried out. As each animation finished, students were asked to rate that version of the

animated algorithm for speed and clarity. Subjects in the study were asked to respond to

the questions shown in Appendix B. Some of the questions were the following:
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Table 4.1: Exploratory Study

Preferred Version Aided Understanding New Student
Dots 1 1 2
Horizontal 16 16 15
Vertical 18 18 19

"* What did you think about the speed of the animation?

"* How well did you understand what each bar or dot represented?

After all three versions of the animation were shown, students were asked to compare

the three representations. Factors included were personal preference, best version to use for

teaching a new student, which most aided their understanding, and best representation of

the data. They were also asked to compare the versions for clarity and speed.

4.2.6 Analysis

Both vertical and horizontal bars were much preferred over the dot representation (p <0.05).

Results indicated that there was no clear preference between the vertical and horizontal bar

versions of the animation. These preferences appear in Table 4.1. The vertical represen-

tation received the highest number of best votes in all categories. However, this difference

was not statistically significant above the horizontal bars. Analysis of the preference data

indicated no effect of order.

Given a ranking scale of 1 to 5, students were asked to rate the speed of the three

representations. For example, in speed 5 stood for Too Fast, 4 represented A Little Fast,

3 was Just Right, 2 was A Little Slow, and 1 was Much Too Slow. With regard to speed,

dots averaged 3.8, Horizontal averaged 3.2; and Vertical averaged 2.8. This suggests that

the dot representation seemed fast, the horizontal a little too fast, and the vertical a small

fraction too slow. This may have affected the preference scores for the dot representation,

since it was viewed as too fast.
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The Quick Sort algorithm was presented three ways: dots, vertical bars, and hori-

zontal bars. For each of the criteria below, subjects were asked to select the best and worst

representation. Results of the questions appear in Table 4.2.

Best Worst
Speed
Color
Clarity
Overall Visual Impact
Data Representation

Not all sums are equal to the number of subjects. Some students answered a question

with two choices; others omitted some answers.

X2 tests (See Table 4.3 for a summary) indicate that vertical and horizontal are

preferred to dots in all categories. Vertical representation is preferred for clarity and receives

the highest number of best votes for speed, color, overall visual, and data representation.

This seems to support our intuition that the vertical is the favored choice. This may be

due to added familiarity with this representation since bar graphs are frequently used to

present numeric data. This version is closely followed by the horizontal representation.

Dots received the majority of worst characteristic selections.

Students preferred the two representations in which the orthogonal factors, i.e. size of

an element and location in an array, were coded in distinctly different fashions. Comments

made indicated that the dot representation was initially confusing as to what was indicated

by the X and Y dimensions of the individual dots. This seems to be because the possibility

existed that the X dimension could be the value. No visual evidence was included to

clarify this questions. In fact, some students expressed verbal puzzlement over the second

dimension. Both the vertical and the horizontal bar representations, however, were readily

understood by the subjects. A few subjects made remarks as they watched such as "The

height is the value," thus confirming that the coding was apparent.

Student response to the dots was generally negative, although many researchers

believe that the dots are the more effective method for presentation of this type of sorting

algorithm. Since the visual coding was not explained to the students, they were unable to
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Table 4.2: Best and Worst Characterizations

Best Worst

Speed
Dots 4 13

Horizontal Bars 11 1
Vertical Bars 16 5

Color
Dots 4 11

Horizontal Bars 11 3
Vertical Bars 16 2

Claxity
Dots 4 16

Horizontal Bars 8 2
Vertical Bars 14 3

Overall
Visual

Dots 2 27
Horizontal Bars 15 0

Vertical Bars 17 3
Data
Representation

Dots 2 27
Horizontal Bars 14 1

_ Vertical Bars 18 3
Total Votes I

Dots 16 94

Horizontal Bars 59 7
Vertical Bars 91 16
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Table 4.3: Best Ratings Comparisons

Difference of Vertical and Horizontal Bars from Dots
Characteristic x2  d.f. p

Preferred Version 17.3 2 .05
Aided Understanding 17.3 2 .05
Best for New Student 16.18 2 .05
Speed 7.06 2 .05
Color 7.06 2 .05
Clarity 5.80 2 .06
Overall Visual 13.19 2 .05
Data Representation 13.77 2 .05
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easily map the representation to their conceptual idea of the algorithm. This result indicates

that with the dot representation some verbal or written description of the meaning of the

representation is needed to allow a fuller appreciation of what is being shown. Students

were also asked to comment on the use of animations to teach algorithms. Several comments

made by students indicated that:

* Students would like animations used to teach algorithms.

* Students believe that animations can be helpful in the learning process.

o Several students indicated a desire to have labels or text added to the animation.

These comments were used in designing the experiment presented later in this chapter.

4.3 Ramking Study

The previous study indicated some trends concerning student preferences. The next step

was to follow up on the student suggestions for adding labels. In this study, labels were

used to indicate the value of data elements. These were numeric values which appeared

at the top, bottom, left, right, or in the middle. Students were asked to rank twenty-one

different representations of the data according to individual preference.

4.3.1 Design

Order of the materials was randomized to avoid order effects. Each subject was to rank the

views according to individual preference.

4.3.2 Subjects

Subjects were 26 students in a Computer Architecture Class at the Georgia State University.

They had taken part in the study described previously. This study occurred approximately

two weeks after the first study.
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4.3.3 Materials

Twenty-one different representations of a sorting algorithm were prepared, as summarized

in Table 4.3.3.

Features of interest were:

* Filled (solid black) or empty (black outline)

SLabel or no label

* Location of label

Nine of these were vertical bars, nine were horizontal bars, and four were dots. Of

the vertical bars, three were solid, and each had one of the following labeling conditions:

no label, label top outside and label bottom outside. The six empty vertical bars featured

one of the following labeling conditions: no label, top inside, top outside, bottom inside,

bottom outside, and center. Labeling conditions for the horizontal bars are simil r, except

that top becomes left and bottom becomes right. There were also two solid and two empty

dots, either labeled in the center or containing no label. Dots were included to conl~rm

previous results which placed them last in students preference.

4.3.4 Procedure

The twenty-one views were printed and duplicated. The students were asked to shuffle the

views in the order of their preference.

4.3.5 Analysis

Results of this study which appear in Table 4.5. showed that:

"* Students ranked vertical bars higher than horizontal.

"* Among vertical bars, solid bars were ranked higher.

"* The highest ranked horizontal bar is empty with a center label.



43

Table 4.4: Twenty-one Views

Filled Empty
Vertical Label Top Outside Label Top Outside

Label Top Inside
Label Bottom Outside Label Bottom Outside

Label Bottom Inside
No Label No Label

Label Center
Horizontal Label Right Outside Label Right Outside

Label Right Inside
Label Left Outside Label Left Outside

Label Left Inside
No Label No Label

Label Center
Dots Label Inside

No Label No Label



Table 4.5: Preferences for Views: Views included received at least one vote for number one

and occurred in the top ten more than ten times.

Object Description Fill Label Placement Number One Top Ten

I Frequency Frequency

Vertical Bars Filled Top Outside 5 19

Vertical Bars Filled Bottom Outside 4 19

Horizontal Bars Empty Center 3 16

Vertical Bars Filled None 2 17

Vertical Bars Empty None 2 17
Vertical Bars Empty Bottom Inside 2 15

Horizontal Bars Filled Left Outside 2 14
Horizontal Bars Filled None 2 14
Horizontal Bars Filled Right Outside 2 13

"* Although the highest ranked horizontal bar is empty, all other horizontal bars appear-

ing in the top ranked group were solid.

"* For solid vertical bars, favored label placement is top outside or bottom outside.

"* For empty vertical bars, no label or bottom inside label were ranked highest.

"• For solid horizontal bars, label placement of left or right outside or no label were

ranked approximately at the same level.

These results appear in Table 4.5. This led to the hypothesis that in sorting algorithms

students would prefer solid vertical bars with labels at either top or bottom of the bar.

Horizontal bars would be the next preference, with the dot representation being the least

desired.

Several findings resulted:

1. Most commonly chosen as first preference is the solid vertical bar representation with

labels at the top of each bar. Second ranked was the solid vertical bar representation

with labels at the bottom.
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Table 4.6: Summary of Preference Results

Factor Number One Frequency Top Ten Frequency
Vertical Bars 16 153
Horizontal Bars 9 101
Dots 1 6
Solid 17 98
Empty 9 162
Labels 20 200
No Labels 6 60

2. In all, solid vertical bars were ranked first 11 times, solid horizontal bars 6 times, and

empty vertical bars 5 times, and empty horizontal bars 3 times.

3. Most often ranked in the top 10 was black vertical bar, labels at the bottom and solid

vertical bar, top labels.

Table 4.6 shows the number one frequencies and the top ten frequencies for types of

representation, solid and empty, and label or no label. We observe that labels are strongly

preferred to no labels, while vertical bars are chosen many more times than horizontal bars

or the dot representation. Again, the dot is the least favored.

Further analysis ranked each view by assigning a point value to the ranking and

summing the rankings. For example, a first choice received 20 points, a second choice 19

points, and so on to last choice with 0 points. The top five views were as follows:

1. Vertical, empty, label top outside, sum of rankings: 438

2. Vertical, filled, label top outside, sum of rankings: 368

3. Vertical, filled, label bottom outside, sum of rankings : 365

4. Vertical, empty, label top inside, sum of rankings : 330

5. Vertical, empty, label bottom inside, sum of rankings : 322
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Analysis of variance with factors data representation and fill style indicated a significant

difference with respect to representation (F = 47.50. d.f. 20, p < 0.01). Pairwise t-tests

showed that vertical bars were preferred to horizontal bars (p < 0.05) and to dots (p <

0.01), while horizontal bars were also preferred to dots (p < 0.05). All the top six were

vertical bars with labels, indicating student preference for these parameters.

4.3.6 Discussion

Overall, results indicate that students prefer vertical bars with numeric labels. These two

studies show clear results in the case of student preferences. Students tend to prefer data

representation for sorting algorithms which:

"* Are vertical bars

"* Show labeled values

In addition to this preference, students request the use of text or vocal explanations to

accompany the animation. This is the one suggestion which occurs most frequently. Ex-

ploration of this factor occurs in Chapter 7. Other suggestions concerning the use of color

to serve as indicators of various steps are also discussed in that chapter. Once these pref-

erences were established, the next step was to investigate whether these preferences were

intuitively correct in determining the best format for data representation. The next ex-

periment compared three data representations to determine which was best for use with

this algorithm and to also determine whether student preferences matched or contradicted

student performance.

4.4 Do Preferences Match Performance?

The previous studies examined student preference. However, the representation preferred

may not be the representation which is most helpful in learning the algorithm. The pref-

erence studies indicated a desire by the students for vertical bars with labels. This was

examined in two experiments. The first experiment, which follows, dealt with the issue of
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data representation. Data labels were not included in this experiment in order to avoid the

confounding of the effects of labeling and representation. The second experiment explores

the labeling issue is explored in Chapter 5.

If preferences for representation type indeed match performance, students would be

expected to show highest scores on the vertical bar representation, closely followed by the

horizontal bar representation. Dots would be expected to place solidly last. Performance

was measured by scores and time data on a post-test given immediately following exposure to

the animation. In order to take a closer look at the effects of representation on performance,

a two-factor experiment was conducted at the Georgia Institute of Technology. The first

factor was the representation of the data. Three representations were included: vertical

bars, horizontal bars, and dots. Another issue of concern was optimal data set size for the

animations. Conflicting hypotheses were that large data set size:

1. Presented a clearer and more detailed overall picture.

2. Was too distracting and confusing.

This experiment provided more information as to whether representation and data set size

did, indeed impact student understanding of the algorithm.

4.4.1 Design

This was a 3 x 3 between-subject design shown in Table 4.7. The first factor was data

representation style: vertical bar, horizontal bar, and dot. The second factor was data set

size, with small being characterized as less than 10 data elements, moderate characterized as

10 to 40 data elements, and large characterized as more than 40 data elements. Dependent

variables analyzed were completion time and accuracy on the post-test. Although the large

size data set represented here was not as large as a 100 or 200 data set, this size was

selected as large enough to give an overall picture of the algorithm while not overcrowding

the screen. It was felt that too high a screen density would interfere with comprehension as

well as preclude the addition of legible numeric labels in later experiments. It was expected

that vertical bar format would lead to faster times and greater accuracy on the post-test.
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The dot representation was expected to lead to the lowest scores. Medium data set size was

predicted to be the optimal choice as measured by accuracy and time on the post-test.

4.4.2 Subjects

Subjects were thirty-six students in CS2201, a Data Structures and Algorithms class at

the Georgia Institute of Technology. Students were volunteers who received class credit for

participation in the experiment. These students were chosen because the algorithm to be

used was scheduled to be presented during the class. The experiment was conducted during

the week before the algorithm was taught.

4.4.3 Materials

Three versions of the Quick Sort Algorithm were prepared. These animations represented

each of the three types previously described: vertical bar, horizontal bar, and dots.

Data sets were prepared for the small, medium, and large conditions containing 9,

25, and 41 elements respectively. Larger data sets were not used because of factors of screen

density and the difficulty of inserting legible numeric data labels.

A text description of the algorithm to be used, Quick Sort, was prepared. This

algorithmic description was based on textbooks at the level of the class. Two instructors

who commonly taught this algorithm examined it for clarity.

The post-test questions were based on questions in text books which covered the

quick sort algorithm. An on-line survey form was created which allowed these questions to

be presented to each subject on the computer screen. Questions were presented in multiple

choice or true/false format. Responses and times were recorded by the computer in log files

for later analysis.

4.4.4 Procedure

Each student completed a consent form and a pretest. Students were randomly assigned to

one of nine groups based on data set size (small, medium, large) and representation (vertical

bars, horizontal bars, and dots). They then were asked to read a handout on the algorithm.
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Table 4.7: Design of Experiment

REPRESENTATION TYPE
SIZE Vertical Bars Horizontal Bars Dots

Sman
Medium

Large

This handout was based on text materials at a level intended for the course in which they

were enrolled. They were told that they would view an animated version of the algorithm.

Students then viewed the animation. The representation was not explained to them. They

were allowed to view it until they felt ready for the post-test. Students then completed a

computerized post-test as well as working out an example of the algorithm on paper.

4.4.5 Analysis

ANOVAs for time and accuracy did not reveal a significant difference between groups ac-

cording to either data set size or representation. Cell means for accuracy are found in

Table 4.8; while cell means for time appear in Table 4.10. See Tables 4.9 and 4.11 for

ANOVA results.

Comments made by students indicated a desire to see animated algorithms added

to the teaching of algorithms. Several students inquired whether they could access other

algorithms as they were presented in class.

Suggestions for improvements to the animations included labels and some indication

of the current location of the pivots, a crucial feature of the Quick Sort algorithm.

4.4.6 Discussion

No significant difference in accuracy was found due to representation or data set size. The

percentage correct of the seven questions in the post-test was 64% for the Vertical Bars,

68% for the Horizontal Bars, and 74% for the Dots.
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Table 4.8: Accuracy Results: Number Correct of Seven

CELL MEANS
SIZE Vertical Horizontal Dots Marginal

S Bars Bas Means
Small 4.50 5.25 4.75 4.83
Medium 4.50 4.50 6.00 5.00
Large 4.50 4.25 4.75 4.50
Marginal Means 4.50 4.67 5.17 29

Table 4.9: Accuracy Results

ANALYSIS OF VARIANCE
SOURCE SUM OF D.F. MEAN F TAIL
SOURCE SQUARES SQUARE PROB.
MEAN 821.77778 1 821.77778 672.36 0.0000
REP 2.88889 2 1.44444 1.18 0.3221
SIZE 1.55556 2 0.77778 0.64 0.5370
RS 4.77778 4 1.19444 0.98 0.4363

Table 4.10: Cell Means for Time

CELL MEANS
SIZE Vertical Horizontal Dots Marginal

Bars Bars Means
Small 150.3 143.5 194.0 162.6
Medium 160.3 137.8 116.0 138.0
Large 134.5 169.3 122.3 142.0
Marginal Means 148.3 150.2 144.08 1
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Table 4.11: ANOVA of Time Results

ANALYSIS OF VARIANCE
SOURCE SUM OF D.F. MEAN F TAIL

SQUARES SQUARE PROB.
MEAN 755632.01190 1 755632.01190 467.46 0.0000
REP 226.72126 2 113.36063 0.07 0.9324
SIZE 4134.69828 2 2067.34914 1.28 0.2953
RS 13762.34409 4 3440.58602 2.13 0.1058
ERROR 42027.66667 26 1616.44872
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An interaction between size and representation was found in the data analysis. This

indicated that horizontal bars in the large data set size were worse than dots in the medium

data set size. However, closer examination of the data revealed an outlier. This outlier

was an unusually large time value for the post-test. It was due to one subject who seemed

reluctant to commit to any response. When the outlier was removed, the interaction no

longer appeared. The time results are graphed in Figure 4.4.

Although there were no main effects for either representation or data set size in

this experiment, the results of the experiment proved valuable. It drew attention away

from representation of data elements to other aspects of the animation. Students' numer-

ous suggestions derived from this experiment helped chart the direction of future studies

by providing many useful ideas for the course of future experimentation. Students made

suggestions about improving the animation. The following represent students' suggestions,

with the first six being those most often given:

1. Use labels on the data elements (suggested several times). These labels would be

numbers which would indicate the relative value of the data elements when the data

elements were numbers. Such labels could appear above, below, or superimposed on

the data elements. In other algorithms such as graph based algorithms, these labels

might represent weights on edges or the order in which nodes were visited. In any

case the label must be relative to the algorithm.

2. Emphasize the pivot by making it a different color or label it. The pivot is a key

element of the Quick Sort Algorithm. It is used in every comparison and divides the

elements of less value than the pivot from the elements of greater value. The pivot

changes at each recursive call of the algorithm.

3. Include some indication of the current data range. Possibilities include separation by

lines, different colors, and arrows marking the borders.

4. In Quick Sort, show some indicator of the two pointers which are used to determine

items to be swapped. Include moving pointers or arrows for the up and down indi-
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cators. Alternately, color the two bars where up and down are currently a different

color.

5. Add a textual commentary of the process of the algorithm. This textual commentary

would parallel the visual progress of the animation.

6. Show lines of code or pseudo code corresponding to animation. Several students

wished to see Pascal, C, or pseudo code corresponding to each portion of the animation

as the animation was displayed.

7. Use greater than/less than signs to show progress of pointers. The greater than signs

could indicate the pointer which searches in the Quick Sort Algorithm for the items

greater than the pivot.

8. Indicate comparison with colors instead of flashing the bars being compared. Some

students found the flashing of the bars to be distracting.

9. Give the user step-by-step control. Students wished to be able to pause the animation

at crucial points and examine the representation more closely.

10. Provide an explanation of the representation. Students wished to have explained what

the data elements represented, for example in the dot representation the X coordinate

represented position in the array while the Y coordinate represented value of the data

element.

11. Add an auditory commentary. This commentary would provide additional information

about the progress of the animation.

Suggestions 1 through 4, 7 and 8 dealt with visual representation of graphical ele-

ments. Student suggestions indicated that the key variables of the algorithm, i.e. the pivot

point and upper and lower bounds, needed to be emphasized graphically. Note that some

of these variables were not coded visually in the experiment (such as the upper and lower

bounds of the current data set). Furthermore the graphical encoding techniques suggested
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Table 4.12: Student Preferences

Preference Results
Representation Vertical Bars
Labels Numeric labels
Color 11 As indicators

fell into two categories: modifying the object already on the screen as in colors or labels

and adding new elements such as arrows or greater than/less than signs. The suggestion

of new elements indicates that subjects were able to learn enough about the algorithm to

identify critical elements.

Suggestions 5, 6, 10 and 11 concerned adding textual or verbal description to the

animation. This indicates that subjects would like further explanation of the process they

are viewing and that they did not already feel that they were overloaded with information.

The request for code probably reflected the programming nature of the class from which

the students were drawn.

The last category of suggestion was step-by-step control by the user. This seems to

indicate that students perceived control as an important facet of learning. Some information

was lost because it was removed before the subject had fully processed it.

From these experiments we learn much about student preferences. As illustrated

in Table 4.12, students prefer bar representations of the data, labels are desired, and that

optimal data set size interacts with representation. Thus, this experiment was the source

of several guides to continuing the course of investigation.

These studies of students preferences established some clear choices in the question

of data representation. Since no advantage was demonstrated for any representation in

terms of accuracy, student preferences can, indeed, help to serve as guides in choices for

developing the animations.

The next area of exploration was design of the animations themselves. Design issues
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which we explored include the use of data labels, interactive or passive data sets, and the

use of color cues and text commentary to mark important parts of the algorithmic process.

Chapter 5 explores the use of data labels in these animations while Chapter 6 contrasts

active and passive design features. Labeling of important features of the algorithmic process

is explored in Chapter 7.
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CHAPTER V

LABELING DATA ELEMENTS

5.1 Introduction

The next step in the research was to explore design issues connected with the building of

the animations and the nature of the tasks these animations may be best applied to helping.

One such design issue was the question of the labeling of data elements with numeric values.

In this chapter we examine the effect of labeling data elements with numeric values.

Work by Glucksberg [25] on Duncker's candle problem suggests that labels may play an

important part in problem solving. Preference studies show that the labeled versions are

preferred to unlabeled versions at a ratio greater than three to one. During the previous

experiment on data representation and data set size, students were asked to suggest ways

to improve the animation. They were told that their suggestions wc 'ic be used to provide

a basis for later versions of the animations and asked to base their suggestions on improve-

ments which would increase understanding of the algorithm. Students most often suggested

that labels would improve the animation. This factor warranted a formal investigation.

Those suggestions made most frequently were to label the data, emphasize key ele-

ments by color changes, include some indication of the subset of the data structure currently

under consideration, and the addition of text in the form of explanation, pseudo-code, or

actual code.

This experiment examined the effect of labeled data versus non-labeled data versions

of Selection Sort and Quick Sort XTango animations on accuracy and time to complete the

post-test. This served to investigate whether student preference was a reliable guide to

animation design or whether preference is not an accurate indicator of the most effective

presentation. The experiment compared groups using labeled and non-labeled data sets.
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The Labeled groups saw the algorithm with each element labeled by value. The Non-labeled

group judged the value of the data elements in the vertical bar representation by the height

of the bars, while in the dot version, value was represented by the Y-coordinate of the dot.

Two data representations were used. They were vertical bar (preferred by students) and

dots.

The second part of this experiment focused on the task issue. Two algorithms of

different complexity were used in the experiment as a second factor in order to determine

if animations were more effective in teaching simpler or more complex algorithms. Quick

Sort is O(n log n) while Selection Sort is 0(n2). Quick Sort is generally perceived as being

more difficult to learn than Selection Sort, but more efficient in operation. One question of

concern was whether there would be different effects for different tasks and whether order

of presentation would affect results.

The experiment was conducted at the Georgia Institute of Technology using the

XTango algorithm animation package. Results indicated that labeling the data did not

improve accuracy on the post-test.

5.2 Experiment: Do Labels Help?

How much influence does the presence or absence of numeric labels have in the effectiveness

of animated algorithms in teaching computer algorithms?

Hypothesis: Numeric labels on data sets in animated algorithms aid in understand-

ing and application of the algorithm.

It was hypothesized that those students who viewed the labeled versions of the

algorithm animation would achieve a higher degree of understanding of the algorithm as

measured by higher scores on the post-test and quicker times to complete the post-test.

Since the labels provide additional information, students should be better able to understand

the steps of the algorithm as represented by the animation.

How much influence does the representation first seen (vertical bars or dots) have on

the effectiveness of animated algorithms in teaching computer algorithms?
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Table 5.1: Design of Data Element Labeling Experiment

LABELING ISSUES
Seen First Labeled Unlabeled

Quick Sort Selection Sort Results
Quick Sort Results

Selection Sort Selection Sort Results
Quick Sort Results

Hypothesis: The animation first seen will affect results on the post-test.

It was hypothesized that students who viewed the vertical bar animation first would

achieve a higher degree of understanding of the algorithms since these students will have a

more familiar first introduction to learning sorting algorithms with the animation system.

5.3 Design

This was a 2 x 2 (within 2) design, as illustrated in Table 5.1. One variable was Label or No-

label condition; the second variable was the algorithm first seen; the within subject variables

were the algorithm and the representation, since each participant saw both algorithms and

both vertical bars and dots.

5.4 Subjects

Subjects were forty students at the Georgia Institute of Technology who were taking CS1410,

the first programming course for Computer Science majors at the Institute. This course is

also required for most Engineering majors at Georgia Tech. These students were volunteers

who received class credit for their participation.

5.5 Materials

Animated versions of the two sorting algorithms were prepared. Numeric labels were used

to represent the value of the data elements. In one pair of animations, vertical bars were
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Figure 5.1: Quick-Sort, Dots, Labels

used for the sort algorithms. For the second pair of animations, the dot representation

was used. Labels representing the value of the data element appeared within the bar or

dot. In the Selection Sort, data was represented as empty bars when unsorted, and became

solid bars once they were in position. In the Quick Sort, the pivot element was represented

as solid, while other elements were represented as empty. Comparison was represented by

blinking of the compared pair of data elements. Examples of the four conditions appear in

Figures 5.1, 5.2, 5.3, and 5.4.

Students in various groups saw either labeled or non-labeled versions of both ani-

mations. One algorithm was represented by the dot format and the other by vertical bars.

Students were randomly assigned to conditions. Order and representation of the algorithms

presented was alternated randomly to avoid order effects.

An on-line post-test consisting of ten multiple choice or true/false questions for each

algorithm was prepared. See Appendix D. The on-line nature of the post-test allowed

accuracy and time to be automatically recorded for each subject. The Paper Fold Test

and a Vocabulary Test were given so that verbal and spatial ability could be analyzed as

covariates.
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Figure 5.2: Quick-Sort, Dots, No-Labels

Figure A3 1 B Br
Fiue5.3: Selection Sort, Vertical Bars, Labels
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Figure 5.4: Selection Sort, Vertical Bars, No Labels
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5.6 Procedure

Each student completed a consent form and a pretest of computer knowledge and exposure.

The Paper Fold Test and a Vocabulary Test were given. The first algorithm was presented

briefly by a printed description at the beginning of a laboratory session. The Quick Sort

and Selection Sort descriptions appears in Appendix F. The XTango animation followed.

A post-test of understanding and application of the algorithm immediately followed the

demonstration. The procedure was repeated with the second algorithm. Each student saw

both the Quick Sort and the Selection Sort algorithms. One sort algorithm used the vertical

bar representation while the other used the dot representation. Each subject, therefore, saw

the algorithms and representations in a balanced fashion.

Students were asked to give their preference as to which representation they preferred.

5.7 Analysis

Dependent variables were accuracy and time on the post-test. This test was designed to

measure behavioral objectives based on concepts and applications of the sorting algorithms.

Covariates of spatial and verbal ability (as measured by the Paper Folding Test and a

Vocabulary Test) were also analyzed. These covariates were not found to be significant and

were dropped from further analysis.

Table 5.2: Time Results In Seconds

Time Results
Quick Sort

Quick First Selection First Marginal
Labeled 516.0 596.0 556.0
Unlabeled 412.2 482.2 447.2

Selection Sort 11 1_1
Labeled 302.4 416.3 359.5
Unlabeled 335.5 393.9 364.7
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Table 5.3: ANOVA, Time, Quick Sort Post-test

ANOVA RESULTS
Source Sum of D.F. Mean F Tail

I Squares Square Prob.
MEAN 64102.40000 1 10064102.40000 261.32 0.0000
LABEL 18374.40000 1 118374.40000 3.07 0.0881
FIRST ALG. 56250.00000 1 56250.00000 1.46 0.2347
LA 250.00000 1 250.00000 0.01 0.9362
ERROR 1386429.20000 36 38511.92222 1 1 1

Analysis of variance was conducted. This method of analysis was selected in order to

evaluate the effect of each factor and any possible interactions between factors. Factors used

in the first analysis were Label or No/Label condition and algorithm first seen. Analysis

was also conducted of using the factor of representation first seen. No significant dierence

was observed for the representation, so these groups were collapsed for future analysis.

Cell means for time on both algorithms are shown in Table 5.2. Analysis based on

elapsed time for the post-test disclosed that time on the Post-test was marginally significant

for the labeled condition with the Quick Sort (P=3.07, d.f.=1,36, p < 0.09). Those who

viewed the labeled representation took slightly longer to complete the post-test. These

ANOVA results appear in Table 5.3. No difference was observed as a result of labeling

or of algorithm first seen for time for the Selection Sort. These ANOVA results appear in

Table 5.4. However, an effect of algorithm first seen was observed for the Selection Sort

algorithm. Further study of these results disclosed the fact that those who saw the Selection

Sort first took longer on the Selection Sort Post-test.

Scores were not significantly different in either accuracy or time for the group which

viewed the vertical bars first as compared to the group which viewed the dot representation

first.

No effect of labeling or algorithm first seen was found for the Quick Sort or for the
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Table 5.4: ANOVA Time, Selection Sort Post-test

ANOVA RESULTS
Source Sum of D.F. Mean F Tail

Squares Square Prob.
MEAN 5242484.02500 1 5242484.02500 243.88 0.0000
LAB 286.22500 1 286.22500 0.01 0.9088
FIRST ALG 74218.22500 1 74218.22500 3.45 0.0713
LA 7700.62500 1 7700.62500 0.36 0.5532
ERROR 773851.90000 36 21495.88611 1 1
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Table 5.5: Accuracy Results: Number Correct Out Of Ten Questions

Accuracy Results
Quick Sort

Quick First Selection First Margial
Labeled 5.5 5.7 5.60
Unlabeled 5.7 5.3 5.50

Selection Sort _ _ 1
Labeled 7.5 7.1 7.30
Unlabeled 7.2 7.7 7.45

Table 5.6: Accuracy on Quick Sort Post-test

ANOVA RESULTS
Source Sum of D.F. Mean F Tail

Squares Square Prob.
MEAN 1232.10000 1 1232.10000 548.96 0.0000
LABEL 0.10000 1 0.10000 0.04 0.8340
FIRST ALG 0.10000 1 0.10000 0.04 0.8340
LA 0.90000 1 0.90000 0.40 0.5306
ERROR 80.80000 36 2.24444 1 1 1

Selection Sort on accuracy. Cell means for these tests may be seen in Table 5.5. Analysis

of variance was conducted with dependent variable accuracy. ANOVA results appear in

Tables 5.6 and 5.7.

5.8 Discussion

The first result observed was the effect of labeling on the Quick Sort Posttest. Those in the

label condition required a slightly longer time on the Posttest. ( F = 3.07, d.f. 1,39, p =

0.08).

There was no significant result relating to accuracy on either post test. This would
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Table 5.7: Accuracy on Selection Sort Post-test

ANOVA RESULTS
Source Sum of D.F. Mean F Tail

Squares Square Prob.
MEAN 2175.62500 1 2175.62500 920.36 0.0000
LABEL 0.22500 1 0.22500 0.10 0.7595
FIRST ALG 0.02500 1 0.02500 0.01 0.9187
LA 2.02500 1 2.02500 0.86 0.3608
ERROR 85.10000 36 2.36389 1 1
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Table 5.8: Time Results Selection Sort, Based on First Algorithm

Cell Means
TIME Quick Sort First Selection Sort First
Labeled 302.4 416.3
No Labels 335.5 393.9

indicate that labels on the data elements are not a major factor in understanding of the

algorithm, even though students request them. In light of these results, it would seem that

incorporating labels on data elements into animations is not a significant help. However,

since the labels do not impact in a negative fashion on test accuracy and since students

desire them, they may well be used in the animations when the representation allows it.

Another result was the effect of the first algorithm seen on the time for Selection

Sort Posttest. Those who saw the Selection Sort first took longer on the Selection Sort

post-test. These results appear in Table 5.8. Apparently, having learned the system and

the representation on the Quick Sort was a positive influence on the simpler Selection Sort

when it was second. Previous experience aids learning.

It is difficult to draw any definitive conclusion for animation design from this ex-

periment. In the case of Quick Sort, the labeled condition took longer. However, after

consideration, speed is not the best operationalization of understanding. Observation by

the experimenter suggested that those who worked out answers rather than guessed took

longer. People who had no understanding (as indicated by their comments) guessed at

random. If this is true, than taking longer for the labeled implies that the labeled condition

is better, contrary to superficial expectations.

This experiment indicates that labeling as a design issue did not increase perfor-

mance. This was true for both levels of task complexity. In view of the lack of significant

effect on accuracy of either, it was decided to use the labels when possible, since students

preferred labels. The next step in exploring the issue of animation design was to consider the
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question of whether the animations should be designed to be passive in nature, allowing the

creation of preplanned data sets, or interactive in nature, allowing students to enter their

own data sets in response to individual questions or desires. The next chapter describes

this experiment and its results.
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CHAPTER VI

EXPLORING INTERACTIVE ANIMATIONS

6.1 Introduction

We continued to explore the question of designing animations. Another design issue which

we addressed we- the question of interactive use of the animations. We also addressed the

question of task by including algorithms from two different domains in this experiment.

The domains used were sorting and graph algorithms. This chapter presents an experiment

based on use of the animations in teaching algorithms in a laboratory setting. The area

of concern is whether it is more effective for the student to observe a series of prepared

examples of the animated algorithm or to create his/her own data sets and observe the

working of the algorithm on these data sets. Early surveys of students (See Chapter 4)

indicated that students would like to be able to control the animation in ways such as

the content of the data sets, the number of times the animation is seen, and the speed of

the animation. Prepared data sets had the advantage of using the size ranges suggested

by previous experiments as well as including examples of problem or unusual data sets.

Student created examples had the advantage of close engagement of student attention in

the learning process.

One of the factors selected as a focus for this series of empirical studies was the issue

of student involvement in the use of the animations. During the early experimental studies,

described in Chapter 4, students were asked whether they desired control of the number

of times the animation was run, the data sets input, and the speed of the animation. In

general, students desired to take a more active part in using the algorithm animations.

These studies indicated that students would like to be in control of the number of times

they view the algorithm animations as well as the data sets used.
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The experiment under investigation dealt with the differences in learning demon-

strated by students who were able to control the data set compared to those who viewed

the algorithm with prepared data. Studies of computer aided learning have shown that

increased involvement in the learning process by some focused activity leads to better per-

formance on post tests. This study applies this principle to the area of animated algorithms.

In order to observe the effects of task on the use of the animations, an algorithm

from the domain of graphs was included. This was Kruskal's Minimum Spanning Tree

Algorithm (MST) which determines a series of edges which allow access to all graph nodes

using a mintimal sum of the value of edges. Students were given a written description of the

algorithm, followed by a hands-on session where the algorithm animation was presented.

One group of students watched as the algorithm was shown until they expressed readiness for

the post test. The second group of students created their own data sets for the animation and

were allowed to continue until they expressed readiness for the post test. All students were

exposed in counter balanced order to two algorithms, Quick Sort and Kruskal's Minimum

Spanning Tree.

Results indicated that students in the active session performed at a higher level, as

measured by post test scores. A hypothesis derived from this is that creation of one's own

data set increases the level of involvement in the learning process and thus results in a

higher degree of learning.

6.2 Experiment: Does Interaction Help?

Question: How much influence does learner control of data have on student performance

on a post-test?

Hypothesis: Interactive involvement of the learner with the animation algorithm

package increases understanding and application of the algorithm.
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Table 6.1: Design of Experiment

DESIGN ISSUE
ALGORITHM Interactive Passive
Kruskal's MST
Quick Sort

6.3 Subjects

Subjects were seventeen students at the Georgia Institute of Technology who were taking

CS1410, the first programming course for Computer Science majors at the Institute. These

students were volunteers who received class credit for their participation.

6.4 Design

This was a 2 x 2 (within 2) design illustrated in Table 6.1. One variable was Style, Interactive

or Passive. The second variable was the order of viewing of the algorithm. The within

variable was the algorithm, Kruskal's MST and Quick Sort.

Algorithms from two different domains of computer science were used, sorting and

graph algorithms. This allowed exploration of what types of algorithms are best presented

through animated algorithms. Order was randomized to prevent an order effect. In addition,

it was possible that one order might be preferable to another. Perhaps a simple sorting

algorithm might better prepare one for the more complex graph algorithm. Alternatively

the more inherently two-dimensional graphical algorithm might better prepare one for the

more abstractly represented sorting algorithm. All these factors influence how animations

are incorporated into teaching sequences.
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6.5 Materials

Animated versions of the two algorithms created with the XTango algorithm animation

software were used. These animations were similar to those used in previous experiments.

Changes in the Quick Sort animation were the result of subject suggestions as described

in Chapter 4. Students asked for an indication of active elements and data ranges in the

data set. Thus, the current pivot in the Quick Sort algorithm was represented by a color

change. The portion of the data range under consideration was bracketed by a pair of

arrows pointing in the direction of search. They terminated on the partition boundaries

and grew towards each other to represent the modification of the upper and lower indices.

Since no effect of either representation or labeling was observed in the previous experiments,

students preferences were followed in designing a vertical bar labeled representation. An

example of this animation appears in Figure 6.1. Data sets were chosen in the medium size

indicated from previous results. The data elements themselves were ordered in such a way

as to provide (1) even-sized partitions and (2) minimal pivot movement (3) and maximal

pivot movement.

The Kruskal Minimum Spanning Tree presents the graph as a series of nodes repre-

sented as open squares. The name of the node is represented by a capital letter. Letters are

assigned to nodes in the order of their creation. As the edges are drawn, the value of the

edge appears at the upper right of the window, labeled by end points. It also appears at

the center of the edge. When The entire graph has been entered, the column of edge values

is sorted by value. As an edge is added to the Minimum Spanning Tree, its color changes

from green to red both in the graph and in the list of edge values. In the Kruskal Minimum

Spanning Tree, edges not yet considered were blue, edges under consideration were flashed

(blinked), while edges chosen for inclusion in the Minumum Spanning Tree were shown as

red. Students in each group were either allowed to generate their own example data sets

or were presented with prepared examples. Examples were chosen to show representative

behaviors including a fully connected graph, an unconnected graph, and a simple geometric

figure.
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Figure 6.1: Revised Quick Sort Representation
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Table 6.2: Number Correct of Thirteen, Kruskal MST

Kruskal First Quick First Marginal
Active 9.60 9.25 9.43
Passive 8.00 5.00 6.50
Marginal 8.80 7.13 7.97

6.6 Procedure

Each student completed a pretest of computer knowledge and exposure. Student partici-

pants were exposed to two algorithms during the experimental session. Order was random-

ized to control an ordering factor, with half of the students seeing each algorithm first. The

first algorithm was presented briefly through a paper handout, followed by the XTango ani-

mation. Students were allowed to interact with the animation or view prepared examples of

the animation until they felt ready to complete the post-test. A post-test of understanding

and application of the algorithm was given immediately following the demonstration. The

animation was not available during the test. Then the subjects repeated the experiment

with the second algorithm. Each student viewed both the Quick Sort, illustrated in Figure

6.1 and the Kruskal Minimum Spanning Tree, illustrated in Figure 6.2 algorithms.

6.7 Analysis

Dependent variables were accuracy and time on the post-test. 2 x 2 ANOVAs were com-

puted. Factors used in the first analysis were interactive or passive condition and algorithm

first seen.

Results (as shown in Table 6.2) indicated that those subjects who participated in an

active session achieved higher scores on the Kruskal post-test than those subjects who were

placed in a passive session.

The mean score for the Passive group were 50%, while the mean score for the Active
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Table 6.3: Accuracy Results, Kruskal MST

ANALYSIS OF VARIANCE
SOURCE SUM OF D.F. MEAN F TAIL

_SQUARES SQUARE PROB.
MEAN 1067.81 1 1067.81 182.77 0.00
FIRST ALG. 11.81 1 11.81 2.02 0.18
STYLE(Active/Passive) 36.02 1 36.02 6.17 0.03
AS 7.39 1 7.39 1.27 0.28
ERROR 75.95 13 5.84

group was 73%. Analysis of variance showed this difference to be significant (F = 6.17, df=

1,13, p=.03) These results are indicated in Table 6.3. It is hypothesized that the greater

level of involvement required in the interactive condition led to this significant difference.

Table 6.4: Accuracy Results, Quick Sort, Number Correct Out Of Twelve

Kruskal First Quick Sort First Marginal
Active 4.40 4.75 4.57
Passive 4.75 4.75 4.75
Marginal 4.58 4.75

Mean scores for Quick Sort appear in Table 6.4. No significant differences in accuracy

were found for the scores on the Quick Sort post-tests. Table 6.5 summarizes these ANOVA

results.

Analysis of the second dependent variable, time to complete the post-test, followed.

No significant difference was noted in these results. ANOVA results are shown in Table 6.6

and 6.7.

It was noted, however, that groups with higher scores tended to take longer to
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Table 6.5: Accuracy Results, Quick Sort

ANALYSIS OF VARIANCE
SOURCE SUM OF D.F. MEAN F TAIL

_SQUARES SQUARE PROB.
MEAN 366.12895 1 366.12895 173.39 0.0000
FIRST ALG. 0.12895 1 0.12895 0.06 0.8087
STYLE(Active/Passive) 0.12895 1 0.12895 0.06 0.8087
AS 0.12895 1 0.12895 0.06 0.8087
ERROR 27.45000 13 2.11154

Table 6.6: Time Results, Quick Sort

ANALYSIS OF VARIANCE
SOURCE SUM OF D.F. MEAN F TAIL

SQUARES SQUARE PROB.
MEAN 7048350.02368 1 7048350.02368 41.92 0.0000
FIRST ALG. 82320.12895 1 82320.12895 0.49 0.4964
STYLE(Active/Passive) 177508.86579 1 177508.86579 1.06 0.3229
AS 3342.44474 1 3342.44474 0.02 0.8900
ERROR 2185859.45000 13 168143.03462

Table 6.7: Time Results, Kruskal MST

ANALYSIS OF VARIANCE
SOURCE SUM OF D.F. MEAN F TAIL

SQUARES SQUARE PROB.
MEAN 12495196.44474 1 12495196.44474 50.29 0.0000
ALG 82143.60263 1 82143.60263 0.33 0.5751
STYLE 289965.81316 1 289965.81316 1.17 0.2996
AS 167706.02368 1 167706.02368 0.68 0.4261
ERROR 3229877.95000 13 248452.15000
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Table 6.8: Relative Results, Time and Accuracy

Kruska Accur. Kruskal Time Quick Accur. Quick Time
13 Questions In Seconds 12 Questions In Seconds

Active 9.4 992.5 4.50 749.6
Passive 6.5 730.1 4.75 544.2
Means 7.9 811.3 4.67 647.3

complete the post-test. It was hypothesized that this was due to the fact that those who

really understood the algorithm had to take time to work out the answers to the problems

while those who had no understanding simply guessed an answer. The comparable results

appear in Table 6.8.

6.8 Discussion

This experiment involved the comparative use of active creation of data sets and passive

observation of prepared data sets in the Kruskal Minumum Spanning Tree and Quick Sort

algorithms. This experiment has important implications for the use of animations in teach-

ing algorithms. The groups of students who used the animation in an active way by entering

their own data sets scored higher on the Kruskal test than did those students who only ob-

served the animation. This indicates that involvement in the learning process is important

for the effective use of the animation. This may be either an effect of heightened attention

or the effect of being able to instantly create an example to answer any questions which

arise. In either case, this form of participatory learning can have significant implications

for the design of laboratories to accompany courses where algorithms are introduced. The

availability of such animations could well serve to provide a learning tool which is readily

adapted to individual student needs and concerns. Students could access the algorithm

animations when they had a question about an algorithm or a series of animations in order

to compare and contrast algorithms which are similar.
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It is interesting to observe that effects were shown only on one of the two tasks

involved. This suggests that animations may be best used in the teaching of certain tasks.

One hypothesis is that a graph task may lend itself better to visual explanation than the

numerically based sorting algorithm. Perhaps the student is better able to understand the

mapping from the abstract domain of the algorithm to the visible domain of the animation

for this algorithm. This would accord with suggestions made by Stasko, Badre, and Lewis

[57].

This experiment helped to resolve one of the issues of design of animations, whether

or not pre-prepared data sets should be used. User designed data sets are more effective in

using the animation.

The next question to be addressed in the area of design is how to label steps in

the algorithm. Two of the possible options are the use of text descriptions of steps of the

algorithm and color cues to indicate the steps in the algorithm. These issues are explored

in the next chapter.
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CHAPTER VII

LABELING ALGORITHMIC STEPS

7.1 Introduction

In this chapter, we present an experiment which focused on two ways of labeling algorithmic

steps. Labeling is done by means of color cues and by text explanations. Student demand

for labeling of both types suggested this focus. In previous experiments, students using

the animations were asked to indicate what features should be added to the animation in

order to facilitate understanding of the algorithm. One suggestion was labeling of data

elements. A previous experiment investigated the influence of. labeling individual elements

of data. This type of labeling was found to add little to understanding of the algorithmic

process. Students also suggested that text should accompany the progress of the animation,

to explain the process of the algorithm as it was visually displayed. This type of labeling is

explored in this chapter.

A recurrent theme in the problem solving literature is that the more salient is the

information derived from the example, the better are the problem solving results. An

obvious method for increasing salience is to label or highlight important features. The

influence of labeling in problem solving has a long history. One often cited example is

Duncker's traditional candle problem box of thumbtacks and a candle are given to a problem

solver, where the problem is more easily solved when the box of thumbtacks is labeled "box."

Much of the psychology based literature refers to labeling as the inclusion of textual

names or descriptions, but Magire[34] summarizes a body of research which stresses other

types of cues such as highlighting, shape coding, color coding, and blinking.

The question arises as to whether certain features of information may be best pre-

sented by graphics or by text. Feiner and McKeown 1223 suggest that rationale and abstract
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information should be represented by text, while actions, location, and physical attributes

should be represented by graphics.

Two possible types of information that could be included in the animation are the

conceptual steps in the algorithm and the state of the data structure. Applying Feiner's

suggestion to the design of animated computer algorithms would suggest that conceptual

steps of an algorithm should be text labeled while actions taking place on the data structures

would be represented in a graphical manner.

The experiment investigates whether either of these types of cues, a combination

of both, or neither is most effective in teaching the steps of an algorithm in the anima-

tion. Four versions of Kruskal's Minimum Spanning Tree Algorithm were developed for this

experiment. They included:

"* Text/conceptual labels and visual color/action cues

"* Text/conceptual labels but no visual color/action cues

"* No text/conceptual labels but with visual color/action cues

"• Neither text/conceptual labels nor visual color/action cues

A second focus of the experiment was whether there was a difference in versions in

teaching concepts at a inferential level. It was determined to attempt measurement of this

by the use of a transfer tas!.. Transfer tasks are often used to test the ability of the learner

to extract basic principles from the task or examples used in learning. A frequently cited

example of this type of task is the problem of the General who must attack a city that

may be entered by several roads, but is unable to send a large force along any road. This

problem is transferred to a medical dilemma where an X-ray dosage large enough to destroy

a tumor will also kill the patient if delivered to one spot.

Transfer or incidental learning may be detrimental, in that it may interfere with

intentional learning. On the other hand, it may be helpful in that general principles are

learned which may be applied to several related problem situations. With this in mind, it
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was decided to add a transfer task to the experiment which would also use a greedy heuristic,

since such a heuristic is at the heart of Kruskal's Minimum Spanning Tree Solution.

Results of the experiment indicated that textual labels indicating steps of the algo-

rithm increased scores on the post-test for questions wL:h required free responses, that is

questions which required more conceptual application. The monochrome version of the al-

gorithm proved more effective for the short answer and true/false questions. No significant

difference was found in efficiency for the transfer task.

7.2 Experiment: Do Labels Help?

There are several ways to label steps in an algorithm. One method is to use visual cues such

as color changes and codes to indicate actions. Another method is to display each step as a

text description of what is taking place. These two methods are examined in the following

experiment. The experiment seeks to determine whether text alone, visual cues alone, a

combination of both, or neither is most effective in teaching the steps of an algorithm in

the animations.

This experiment was conducted to answer two questions:

1. How much influence does the presence or absence of text descriptions of the algorith-

mic conceptual steps have on the effectiveness of animated algorithms in teaching

computer algorithms?

2. How much influence does the presence or absence of color cues as indicators of al-

gorithmic action steps have on the effectiveness of animated algorithms in teaching

computer algorithms?

7.3 Subjects

Subjects were thirty-six students at the Georgia Institute of Technology. They were taking

CS1410, the first programming course for Computer Science majors at the Institute. These

students were volunteers who received class credit for their participation.
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Table 7.1: Design of Experiment

CONCEPTUAL STEPS
ACTION STEPS Text Labeled Unlabeled
"Color
Monochrome

7.4 Design of Experiment

This was a 2 x 2 between subject design. One variable was Text Labeled versus Non-labeled

conceptual algorithmic steps. The second variable was Color Cued versus Monochrome Cued

indicators of algorithmic action steps. This design is illustrated in Table 7.1.

7.5 Materials

Animations used for this experiment were created with the XTango Algorithm Animation

Software. This software, developed by Dr. John Stasko of the Georgia Institute of Tech-

nology, allows the programmer to create graphical objects to represent data structures and

to insert visual cues which represent the effects of the algorithm on the data structares.

Figures 7.1 and 7.2 are samples of the algorithm.

Animated versions of the Kruskal's minimum spanning tree algorithm were used.

Text labels reflected conceptual steps in the algorithm: namely,

"* Select the next shortest edge.

"* Check to see if the inclusion of the edge will cause a cycle

"* If no cycle is created, add the edge to the MST.

Color was used in the following ways to represent algorithmic actions:

"* Edges of the graph which had not yet been considered were blue.
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"* The edge of the graph under consideration was red.

"* Edges selected for the Minimal Spanning Tree were black.

In addition, the type of line afforded redundancy in the actions of the algorithm by

providing varied representations of the edges. All representations made use of thin, dotted,

blinking, or thicker lines to represent untested edges, current edge under consideration, test

for cycle, and inclusion in the minimum spanning tree, respectively. Thus, those subjects

who were given both color and line cues received redundant coding of these actions steps

of the algorithm. Those subjects who received both color and textual cues were actually

given information in three ways, color, type of line, and accompanying text. A particular

step in the algorithm might be shown in one, two, or three ways. The action might be

shown by color change and type of line used while the rationale for the action appeared as

a text message on the screen, thus providing three guides to the progress of the algorithm,

based on two types of information. Of concern was the type of information provided which

best led to understanding of the algorithm. The experiment sought to determine which

combination of text and color cues was best for use in the animation.

7.5.1 Description of Algorithm

Subjects were given the following written description of the algorithm:

Kruskal's Minimum Spanning Tree Algorithm

A minim•um spanning tree of a graph is an acyclic subset of the edges that connects all

of the vertices and whose total weight is minimized. This algorithm illustrates a "greedy"

strategy. At each step, the best possible choice of the moment is made.

The algorithm begins by sorting the edges by weight. Then the minimum spanning

tree is built by adding edges.

Given an undirected graph G with set of vertices V and set of edges E, at each step

add to the tree the edge of least weight which does not create a cycle. (A cycle is defined

as a path of length at least one (Vo,VI, ..., Vk) where V0 = Vk. That is, in general, a cycle is
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a path of length three or more that connects a vertex to itself.) Continue until all vertices

are examined. The minimum spanning tree will contain n-I edges, where u in the number

of vertices in the graph.

7.5.2 Post-tests

Three post-test instruments were developed. Learning objectives for the algorithm guided

the development of these instruments. The objectives used were the following:

* The student will be able to list the steps in the algorithm.

e The student will be able to state the first step in the algorithm.

e The student will be able to apply the Greedy Heuristic to determine the next step at

any point.

* The student will be able to recognize a cycle.

* The student will be able to determine when adding an edge to the MST creates a

cycle.

* The student will not add an edge to the MST which creates a cycle.

* The student will be able to determine the advantages and disadvantages of this algo-

rithm.

* The student will be able to apply the steps of the algorithm.

* The student will be able to identify the completion point of the algorithm.

The post-tests included:

e An on-line multiple choice and true/false questionnaire in which students applied

knowledge about the algorithm to concrete examples. This test concentrated largely

on the action portion of the algorithm. Questions were generally at the operational

level.
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"* A paper short-answer questionnaire in which subjects were asked to generalize their

knowledge of the algorithm. This test was more conceptually focused.

"* A transfer task based on another greedy algorithm (the knapsack problem) in which

both application and generalization questions were asked

Both post-tests of the minimum spanning tree algorithm were designed to address key con-

cepts in the algorithm, from perspectives of both understanding and of application. These

concepts were identified before the experiment, and questions were designed to approach

these concepts through both recognition and description. The on-line questions were all of

types that required only multiple choice or True/False response. However, in many cases

one or several steps of the algorithm had to be carried out to determine which answer was

correct. The paper post-test required the subject to

"* Identify the portion of the algorithm which most contributed to its efficiency

"* Recognize a key concept used in the algorithm

"• Carry out one step of the algorithm

"* Name a reason why a certain step could or could not be taken

"* Carry out the complete algorithm

A transfer task was also developed. It was a series of questions based on the Knapsack

Problem. This problem involves which several objects, each with a given weight and profit,

must be placed in a knapsack of limited weight capacity to maximize the profit obtained.

Heuristics often given for this problem are (1) minimum weight first, (2) maximum profit

first, and (3) realative ratio of profit to weight.

7.6 Procedure

Each student completed a pretest of graph knowledge. A textual description of the algorithm

was presented briefiy at the beginning of a laboratory session. Students created a graph and
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Table 7.2: Mean Test Results

TEST RESULTS ACCURACY
No Color No Color Color Color
No Text Text No Text Text

Pretest: 9 questions 3.5 3.7 3.8 3.8
On-line: 16 questions 11.4 10.9 8.6 9.4
Paper: 7 questions 5.3 6 4.2 6.0
'Transfer: 5 questions 1.2 1.2 1.6 0.9

observed the workings of the algorithm on that graph. Each student repeated the process

of graph creation and running the animation until he or she felt ready to take the post-test,

however each student created a minimum of three graphs. A post-test of understanding

and application of the algorithm was given immediately following the demonstration.

7.7 Analysis

Table 7.2 contains the mean accuracy scores for each of the test instruments. Each test

was analyzed separately with a 2 x 2 ANOVA. The pretest was checked to determine if the

subject groups differed in prior knowledge of graphs. The on-line test measured behavioral

objectives with fixed choice questions. The transfer test measured transfer to a conceptually

similar problem. Of all the tests, only the on-line and paper tests had significant results.

For the on-line questionnaire, dependent variable accuracy, color was significant (F

= 6.31, df = 1,28, p =.018) with higher accuracy for no-color. Anova results appear in

Table 7.3.

The graph in Figure 7.3 demonstrates these results. This led to two hypotheses.

First, the lack of color forced a higher degree of concentration in order to understand the

algorithm, thus resulting in better storage of the concepts. Second, that the color distracted

from the key concepts of the algorithm.

For the short answer paper test, text cues were significant (F = 5.29, d.f. = 1,28, p<
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Table 7.3: Analysis of Accuracy Results for Kruskal MST, On-Line

ANALYSIS OF VARIANCE
SOURCE SUM OF D.F. MEAN F TAIL

SQUARES SQUARE PROB.
MEAN 3200.68245 1 3200.68245 550.39 0.0000
COLOR 36.71591 1 36.71591 6.31 0.0180
TEXT 0.18048 1 0.18048 0.03 0.8614
CW 3.54859 1 3.54859 0.61 0.4413
1 ERROR 162.82937 28 5.81533

14

No Color -
13 Color Cues -

12

Problems
Correct 10

9

8

7
No Text Text

Text Condition

Figure 7.3: Results of On-line Post-Test
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Table 7.4: Accuracy Results for Kruskal MST, Paper

ANALYSIS OF VARIANCE
SOURCE SUM OF D.F. MEAN F TAIL

SQUARES SQUARE PROB.
MEAN v14.85192 1 914.85192 382.01 0.0000
COLOR 2.09602 1 2.09602 0.88 0.3575
TEXT 12.67870 1 12.67870 5.29 0.0291
CW 2.09602 1 2.09602 0.88 0.3575
1 ERROR 67.05556 28 2.39484

Table 7.5: Accuracy Results of the Pre-Test

ANALYSIS OF VARIANCE
SOURCE SUM OF D.F. MEAN F TAIL

SQUARES SQUARE PROB.
MEAN 438.57837 1 438.57837 385.45 0.0000
COLOR 0.38152 1 0.38152 0.34 0.5672
WRITTEN 0.19255 1 0.19255 0.17 0.6839
CW 0.02719 1 0.02719 0.02 0.8783
ERROR 31.85913 28 1.13783

0.03). These results are indicated in Figure 7.4. This result showed text cues with visual

cues were better than visual cues alone. The textual cues helped to confirm the information

indicated by the visual cues. Color had no significant effect on this particular result.

The combined results of the tests indicated that conceptual information which re-

quires words to answer may be best given by textual means while the general actions or

workings of the algorithm itself may be as readily conveyed through visual cues.

The pre-test and transfer task were also analyzed. The pre-test was designed to

determine whether preexisting knowledge afected post-test scores. No significant difference

was found among groups taking the test. The ANOVA results appear in Table 7.5.
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Table 7.6: Accuracy Results of the Transfer Task

- ANALYSIS OF VARIANCE
SOURCE SUM OF D.P. MEAN F TAIL

SQUARES SQUARE PROB.
MEAN 337.11118 1 337.11118 224.21 0.0000
COLOR 2.14343 1 2.14343 1.43 0.2437
WRITTEN 0.70565 1 0.70565 0.47 0.4996
CW 0.70565 1 0.70565 0.47 0.4996
ERROR 37.58929 25 1.50357

Study of the transfer task results also indicated no significant differences among

groups, ANOVA results for this task appear in Table 7.6.

7.8 Discussion

Results indicated a significant difference in two aspects. The first was that the color group

has lower scores for the online test. This indicates that color, although popular with the

users, may be a distractor. An alternative hypothesis is that lack of color requires more

concentration to gain a feeling of understanding of the algorithm and therefore led to more

memory cues being processed. This resulted in increased retention and understanding.

However the groups with written steps had higher scores on the paper post-test, which were

questions requiring free response answers concerning both concepts and application of the

algorithm. This would seem to indicate that the optimal condition for these animations

came with the uncolored version containing the written steps. This version ranked a close

second on the online post-test and tied with color/words for highest score on the paper

post-test.

These experimental results supported previous conclusions that graphics present ac-

tions well while conceptual steps may be best presented by text. As a result of this ex-

periment, monochrome animations combined with textual cues were selected as the best



95

choice for conveying all types of information. Animations used in later experimentation

were developed with these features.

This experiment was the last in this series of those which focused on design elements

and task suitability. It provided interesting results which could be readily applied to the

design of animated algorithms. At this point, we were ready to move on to the issue of how

best to incorporate the animations into the teaching process.

Results of the student preference and design phases of the work led to the following

design guidelines:

"* Vertical bars with numeric labels are preferred for sets of numbers

"* Data items should carry value labels where this is appropriate

"* Tasks of an inherent spatial nature show more effect of the use of animations

"• Monochrome animations are preferred

"* Text explanations of algorithm steps should be included

"* Animations should be designed to allow student interaction in selecting the data set

Using these guidelines it is possible to prepare an animation which can be used to

accompany the teaching of computer algorithms. At this point, we began the next phase

of the experimentation. This involved ways to use the animations in actual teaching of the

algorithms. Several pilot studies were carried out to determine whether text or animation

should come first in classroom presentation and to determine the optimal combination of

animation, text, or both. The results of these studies led to a larger experiment which

dealt with teaching the algorithms in small classroom groups to determine which approach

is optimal for use of these animations as a course supplement.
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CHAPTER VIII

EXPLORING LEARNING WITH ANIMATIONS

f•.1 Introduction

The previous experiments were concerned with the issues of animation design. Previous

experiments led to the hypothesis that data representation was not the crucial issue in

designing the algorithm animations. They also indicated that students preferred labeled

data with vertical bars representing data when it was appropriate. Other results indicated

that interactive use of an animation was important, that color served more as a distractor

than as a distinguisher, and that text explanations were helpful. Using the results of these

issues to modify the design of the animations, we proceeded to the next stage on how the

animations were to be used in teaching the algorithms.

At this point, the question was raised of exactly what part did the animation play

in the learning process? Was the animation a help to textual or lecture presentations? Was

the animation sufficient alone instead of being jointly used with textual presentations? Did

the animation provide the basic concepts on the procedure of a particular algorithm, or did

it instead serve to clear up problems, questions, and misconceptions after the foundation of

conceptual understanding had been laid by a previous presentation?

These questions were explored in two ways. The first was an experiment in which

the order of presentation of text and animation was studied. In this experiment, half the

participants received the textual presentation first, the other half viewed the animation first.

They received no other description of the algorithm than the name. This was designed to

explore the question of which of the two, text or animation, was better for initial exposure

to the concepts. No significant difference was found between the two groups used in this

study.
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A second exploration was a pilot study of discovery learning with the animations. In

this study, groups of students were presented with an animation, with a text description of

an algorithm, or text plus animation, and were asked to derive the rules of the algorithm

this animation represented. This pilot study provided insight into how students derived

information from the animations. The participants were able to derive many rules from the

animation alone in simpler algorithms; they were not able to derive rules as readily from a

more complex algorithm.

Students in the text only or text plus animation groups were also readily able to

derive the rules of the simpler sorting algorithms which were presented to them. It was

observed that the text added little to the conceptual formation and rule derivation of the

algorithm. No significant difference was found in the post-tests.

8.2 Which Came First, the Text or the Animation?

This experiment explored the question of whether a text description served better as an

initial presentation, followed by an animation, or whether the reverse was true and the

animation was the better predecessor, followed by a text description of the algorithm. Since

the senses are engaged in a different fashion when reading text than in watching a visual

presentation of an algorithm, one method might be preferable to another in terms of the

best effect on overall comprehension of the algorithmic concepts. This would be of interest

in planning presentations of new algorithms in a classroom or laboratory setting.

8.2.1 Subjects

Subjects were twelve students enrolled in CS 1410, Introduction to Programming. These

students were volunteers who received class credit for their participation in the experiment.

8.2.2 Design

This experiment was a 2 x 2 design in which subjects viewed two algorithms, Selection

Sort and Kruskal's Minimum Spanning Tree Algorithm. Order of presentation was the first

between factor and was randomized. The second between factor was whether students
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Table 8.1: Design of Experiment

Presentation Method
Text Animation
First First

Selection Sort
First
Kruskal MST
First

viewed the animation first or were given the text description first. The design appears in

Table 8.1.

8.2.3 Materials

Two versions of XTango animations were prepared for this experiment. One was a labeled

vertical bar representation of Selection Sort. Previous experiments indicated that this rep-

resentation was preferred by students and that student performance with this representation

was at least as good as any other. An animation of Kruskal's Minimum Spanning Tree was

also prepared. Post-tests containing questions about the algorithms and their application

were also prepared. These post-tests may be found in Appendix I and Appendix J.

8.2.4 Procedure

Assignment to the different conditions was random, with an equal number of students being

assigned to each cell. The different conditions were:

"* Text First, Kruskal First

"* Text First, Selection Sort Firat

"* Animation First, Kruskal First

"* Animation First, Selection Sort First
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Table 8.2: Number Correct of Ten Questions

Animation Text Marginal
Selection First First Means
Selection

Sort 7.3 8.7 8.0
Kruskal
MST 4.0 4.3 4.2
Marginal Means 5.7 6.5

The experimenter read a brief description of the experiment that was about to take

place. Each subject then signed a consent form. Students were allowed to interact with

the animation by entering data sets and observing the process of the animation upon these

data sets. Students were a'e - asked to give reasons for selecting the particular combinations

of data sets that they used. After students completed both the animation and a reading of

the text description, they completed an on-line questionnaire which covered concepts and

applications of the algorithm. This process was then repeated with the second algorithm.

8.2.5 Analysis

Analysis of Variance was conducted with the data to determine if order of presentation

(Text, Algorithm) or order of algorithm (Selection Sort First, Kruskal MST First), resulted

in a significant difference in test scores. No significant difference was observed in accuracy

for either Selection Sort or Kruskal.

It was observed, however, that those in the Text First condition averaged higher

scores (65%) than those in the Animation First condition (57M) though not at significant

levels. These scores appear in Table 8.2.

An interesting marginal interaction (F = 3.79, df = 1,12, p <0.09) was observed for

the Selection Sort test. The ANOVA results appear in Table 8.3. Those in the Text First

condition who saw Kruskal first performed very well on the Selection Sort test. Those in
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Table 8.3: Accuracy Results of Selection Sort

ANALYSIS OF VARIANCE
SOURCE SUM OF D.F. MEAN F TAIL

SQUARES SQUARE PROB.
MEAN 768.00000 1 768.00000 242.53 0.0000
ORDER 5.33333 1 5.33333 1.68 0.2305
ALGORITHM 1.33333 1 1.33333 0.42 0.5346
OA 12.00000 1 12.00000 3.79 0.0874
ERROR 25.33333 8 3.16667

the Animation First group who saw the Selection Sort first also performed very well on the

Selection Sort test. The condition with the lowest average scores for this post-test was the

combination of Animation First and Kruskal First. One possible explanation for this is that

the animation first group was expecting a similar algorithm to Kruskal since there had been

no text definition. Therefore, they may not have made the best judgement in determining

important features of the algorithm from the animation.

The indication here is that order of presentation is not the key issue in improving

concept formation when using algorithm animations. Instead other issues must be studied

to determine the most effective ways to use computer animations in teaching computer

algorithms. A trend toward higher scores for the text first group may be an indicator

that it is the preferred approach. Another factor to consider is that these were relatively

simple algorithms. Therefore, it is hypothesized that either text or animation could serve

as an adequate initial exposure to the algorithm. This may not be true for more complex

algorithms.

8.2.6 Discussion

One focus of this study was to ascertain how students used the animations to answer

questions about the process of the animation. In order to accomplish this, it was decided

to explore their motivations for creating the particular examples that they used. Students
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were asked to give the reasons for selecting the data sets they used. Some of the reasons

for the Selection Sort were:

"* A different type of example

"* An ordered set

"* A very large number in order to watch it progress through the array

"* Reverse order

"* Large range of numbers (from smallest to largest)

"* Random

"* Out of order and wide range

"* Tried to ensure much swapping

"* My age, birth date, and favorite number

Many of the reasons given map closely to typical examples. Frequently we discuss the

process of a sorting algorithm on an ordered set and a completedly unordered set (reverse

order). The students often gave random as a reason for the first trial or two, then progressed

to more organized reasons for selecting the data elements used, such as these reasons given

for Kruskal's MST:

"* To see how the algorithm works

"* To try to confuse the program

"* To try to figure out the next move before the program

"* To determine results on a geometric shape

"* Well-spaced nodes

"* To see if the algorithm carried it out the way I would
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These reasons illustrate the desire to interact with the program and to try to come up

with difficult examples. If examples were prepared for use in advance, they would probably

include some random typical cases and some extreme cases, just as the student examples did.

An additional advantage of the student prepared cases is that questions may be addressed

as they arise with a data set tailored to the purpose.

8.3 Pilot Study on Discovery Learning

This study explored the process by which subjects were able to derive rules about algo-

rithms from viewing various algorithm animations. Subjects were students in a beginning

programming class at the Georgia Institute of Technology. Rules were chosen as the criteria

because they provided discrete units of information which could be matched with subject

input.

This study was designed to provide insight into exactly what part the animation

played in understanding a new algorithm. Was the animation alone sufficient to provide all

concepts necessary, or was it necessary to set the stage with a text explanation of what was

to occur before or during exposure to the animation?

The question of concern here was whether animation alone, text alone, or animation

plus text was the optimal means of presenting a new algorithm to a learner. This was a

pilot study which was expected to provide guidelines for continuing the formal experimental

sequence.

8.3.1 Design

There were three groups in this study. The first group was exposed to Animation Only.

The second group received Text Only. The third group received both Animation and Text.

8.3.2 Subjects

The subjects were nine students enrolled in CS 1410, Computer Programming I. Students

received class credit for volunteering to participate in the experiment. Subjects were engi-

neering majors with classifications ranging from freshman to junior who were enrolled in
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the computer science course as a cognate course for their engineering majors.

8.3.3 Materials

Animations of three sorting algorithms were used. Rules for these algorithms were deter-

mined a priori by consultation with several teachers of computer science. These algorithms

and their respective rules included:

"* Selection Sort

1. Begin with the first element; it is the current smallest one. It is the one to use

for comparison.

2. Compare this element with each element in turn.

3. If a smaller element is found, make that the one for comparison.

4. Continue steps 2 and 3 to the end of the list.

5. When the end of the list is reached, swap the current smallest with the first

element of the list.

6. Repeat with each succeeding element until all elements have been placed and the

list is ordered.

"* Radix Sort

Radix Sort divides the n input numbers into bins by using the digits, beginning with

the least significant digit first.

I. Begin at the beginning of the total list.

2. Place each number in a list according to the last digit. Place numbers ending in

one in sublist one, etc. Place each succeeding number after the numbers in that

sublist.

3. When all numbers are entered, rebuild the total list by joining the short lists in

order, one, two,
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4. Repeat steps 1, 2, and 3 for the second digit of each number and each succeeding

digit until all digits are used.

5. When all digits are used, the list is sorted.

0 Quick Sort

The Quick Sort procedure is as follows:

1. Select a pivot element.

2. Start a pointer moving from the left, searching for a value larger than or equal

to the pivot.

3. Start a pointer moving from the right, searching for a value smaller than the

pivot.

4. When these are located, swap the two elements.

5. Continue moving the pointers from left and right, searching for the larger/equal

and smaller elements.

6. Repeat the swap process.

7. The location where the pointers meet is called the partition point. Swap the

pivot with the last smaller element.

8. Divide the list into left partition, right partition, and pivot. Repeat the process

on each partition piece until each piece contains only one element.

9. Combine the pieces to obtain the sorted list.

8.3.4 Procedure

Subjects were asked to read and sign a consent form. They also completed a demographic

questionnaire to determine their computer science background.

Subjects in the Animation Only group were shown an animation of an algorithm.

Subjects in the Animation/Text group were given a text description of the algorithms and

were also allowed to view the animation. Subjects in the Text Only group were only allowed
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to read text descriptions of the algorithm. Order of presentation was random. After the

animation was completed, subjects were asked to write the rules they had derived from their

observation. The experimenter read the generated document and compared it with the rules

list previously described. This process was repeated and subjects were asked to add any

features they had noted. This cycle was continued until no new algorithmic features were

added.

After this plateau was reached, subjects were tested for their overall knowledge of

the algorithm and ability to apply the process of the algorithm.

The process began again with a different algorithm.

After two algorithms, subjects were asked to apply the rules of the algorithms on a

paper and pencil problem.

This aspect of the experiment was followed by an animation of the Quick Sort algo-

rithm. This algorithm was not tested by a post-test. It served as a comparative measure

of the ease of extracting rules from the presentation.

8.3.5 Analysis

Results of the experiment are given in the following tables. Table 8.4 contains the number

of times the subject had seen the algorithm before he/she derived a particular rule for the

Radix Sort. Table 8.5 contains the rule derivation for the Selection Sort.

The experimenter noted that after subjects had derived a plateau of rules, further

viewings of the animation only produced details of the graphical implementation such as

highlighting or blinking of elements. In one case, the only comment was the size of the data

set.

8.3.6 Discussion

The discovery phase of the experiment led to several conclusions. One of these was that the

Selection Sort algorithm was easily derived from the animation. Students generally were

able to state all rules from no more than two showings. The Radix Sort was also easily

conceptualized from the animation alone. One rule in the Radix Sort which was not so



106

Table 8.4: Viewing After Which Subjects Generated Radix Sort Rules

RADIX SORT
Animation Only

S1 S2 S3 S4 S5
Rules Underived
1 1 1 3
2 1 1 1 1 1 0
3 1 1 2 1 1 0
4 1 1 1 1 1 0
5 1 2 1 1 1 0

Animation
Plus Text

S6 S7
Rules Underived
1 1 1
2 1 1 0
3 1 1 0
4 1 1 0
5 1 1 0

Text
_________ Only

Rules S8 S9 Underived
1 2
2 1 1 0
3 1 1 0
4 2 1 0
5 1 1

readily derived was that the sublists must be maintained in numerical order for reassembly.

In all cases, after two showings of the algorithm, a third showing brought no new algorithmic

information. Some students phrased a rule in more detail after the third showing. In other

cases, a further showing led to the student describing details of the graphical display. These

graphical elements, which served as highlight or attention drawing devices to portions of

the algorithm, were sometimes added to the description. Sample highlighting included

swapping, comparing, and in-place.
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"Table 8.5: Round on Which Subjects Generated Selection Sort Rules

SELECTION SORT
Si S2 S3 S4 S5

Rules Underived

Animation Only
1 1 1 1 1 1
2 1 1 1 1 1
3 2 1 1 2
4 1 1 1 1 1
5 1 3 1 1 1
6 1 1 1 1 1 0

Text Animation
Only Plus Text

S6 S7 Underived
Rules Underived
1 1 1
2 1 1
3 1 1
4 1 1 0
5 1 1 0
6 1 1 0

Text Animation
Only Plus Text

S8 S9 Underived
Rules Underived
1 1 1
2 1 1
3 1 1
4 1 1 0
5 1 1
6 2 1 0
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Table 8.6: Test Scores (Number Correct of 10) and Number of Algorithm Views

Subject Score on Radix Times Score on Selection Times
Post Test Viewed Post-test Viewed

Animation Only
1 10 3 3 3
2 9 3 9 3
3 8 3 7 4
4 7 2 9 2
5 7 3 5 4

Animation + Text
1 9 3 9 2
2 8 2 9 2

Text Only
3 7 3 10 2
4 4 2 8 2

Another observation is that some parts of the algorithm appeared so obvious to

students that they were not stated. An example is Rule One for Radix Sort: Begin at the

beginning of the list.

The computerized test was followed by a paper and pencil test where each subject

was asked to apply the two algorithms to a list of numbers. All subjects were able to

correctly complete this task.

In contrast, students were also shown the Quick Sort Algorithm. This recursive

algorithm is generally perceived as being more complex and more difficult both to teach

and to learn. Students viewing this algorithm were less able to derive the rules involved.

They were able to determine that the pivot changed and that comparisons were taking

place, but some were not even able to determine the overall goal of the algorithm.

One subject noted that arrows moved in the direction of comparison and that com-

parisons were made with the marked pivot element. Exchanges were noted, but the motiva-

tion was unclear. In fact, the subject was unable to determine exactly what was happening

and declared herself puzzled. Another subject decided the purpose of the algorithm was to
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group single digit and double digit numbers. One subject, however, was able to derive the

rules very precisely in two viewings.

Results were similar for all groups of studies, those with the animation only and

those whose with either text or text plus animation. Although no formal statistical analysis

was carried out due to the pilot nature of the study, it was noted that the group of students

who received only the textual description scored lowest on Selection Sort (5.5 versus 8.5

and 7.4). (61% for Animation Only; 71% for Animation Plus Text; and 46% for the Text

Only). This suggests that text alone may not be enough to convey the full meaning of this

algorithm. Either the animation, repeated more than once, or text aided by the animation

produced better post-test scores. However, this is a factor which may vary from algorithm

to algorithm since all three groups scored very similar results in the Radix Sort (8.2,9,9).

It was noted that all groups found it difficult to modify the first description of the

algorithm to obtain a more precise algorithmic description. Any modifications tended to

be to the cosmetic description rather than to the procedural description.

8.3.6.1 Conclusions

Observation of the subjects in this pilot experiment indicated that algorithms may be taught

from an animation alone if

"* The algorithm is simple.

"* Algorithmic steps are emphasized.

"* The subject is allowed more than one viewing.

The understanding of more complex algorithms, such as quick sort, is aided by the

addition of algorithm animation. However, the animation alone is not sufficient to impart all

the details of these more complicated procedures. Indications are that for the more complex

procedures, the best approach is to combine verbal description with algorithm animation.

These experiments have investigated the coordination of text with the use of ani-

mation in teaching sorting algorithms. Results indicate that the combination of the two
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Table 8.7: Comparison of Results for Conditions: Number Correct and Time in Seconds

Subject Selection Radix
12 questions 10 questions

Animation Only
1 8 765.6 10 258.7
2 9 622.6 9 474.8
3 7 459.6 8 246.9
4 9 607.7 7 318.6
5 5 432.2 7 316.3
Mean 7.4 577.5 8.2 323.1
Animation + Text
6 9 591.5 9 253.9
7 8 668.8 9 341.8
Mean 8.5 620.2 9 300.3
Text Only
8 7.0 675.8 10 263.6
9 4.0 749.8 8 530.8
Mean 5.5 712.8 9 397.2
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is better than either alone and that it is preferable to have the text presented first. It

is interesting to observe that animation alone is sufficient for simple algorithms. It is the

more complex algorithms which require that two learning methods be combined for maxi-

mum effectiveness. This would suggest that text and animation are better for separate and

different aspects of concept determination and formation.

Our remaining studies, then, will continue to combine both a text presentation and

an animated view of the algorithm. Text or a verbal lecture will be presented first, with

the animation used to continue the conceptualization process by presenting an example of

the algorithm just described.
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CHAPTER IX

ANIMATION PRESENTATION TECHNIQUES

9.1 Introduction

This series of experiments has had two major goals, to design guidelines for presenting

animated algorithms and to determine how best to use these animations in the teaching of

computer algorithms. Previous experiments led to the following conclusions about the best

format for presenting an algorithm though animation:

"* Labels on data elements had little effect, either positive or negative.

"* Textual labels accompanying algorithmic steps resulted in better results for questions

requiring application of conceptual knowledge.

"* Color cues were counter-productive in indicating steps of the algorithm.

In regard to the question of how best to use these animations, the previous experiment

indicated that interactive data entry was better than passive observation. Students scored

higher on the post-test when they were actively involved in learning by creating and enter-

ing their own example data sets as compared to those who observed examples that used

previously prepared data sets.

These results were applied to animations for teaching algorithms in a a semi-classroom

setting. The animations used included the textual labels of algorithmic steps. In addition,

they were done using cues based on line-type and thickness rather than color. Several

variables were examined:

* Type of presentation of the algorithm example to accompany the lecture, the two

methods compared were animation or transparencies.
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"* Use of a laboratory session to clarify algorithm concepts.

"* Student interaction with the animation during the laboratory session, where one group

received prepared data sets and the second group used self-designed data sets.

Students participated in a group session. Varied conditions allowed some groups to

participate in a lecture with an extra laboratory session while other groups participated in

lecture sessions only. All lecture sessions were accompanied by an example of the algorithm

which was either a series of transparencies prepared in advance or the same data set illus-

trated by an animation. Laboratory sessions were of two types, either using prepared data

sets or allowing the student to create a series of personalized data sets.

Results indicated that there was no significant difference based on the type of example

used with the lecture. Lecture plus laboratory groups performed significantly better than

did lecture only groups. Further analysis indicated that the active laboratory sessions

performed at higher levels than did the passive laboratory groups.

This experiment was an in-depth look at how animated algorithms may be used in

the teaching of computer algorithms. In order to more closely match actual teaching of such

algorithms, group sessions were used. One question which has arisen frequently in these

studies is that of whether to use an animation or transparencies in a lecture presentation

Another question is whether students will excel when given an additional laboratory ses-

sion which allows them to observe several examples of the algorithm. A final question is

the best format for the laboratory session, prepared examples designed by the lecturer or

spontaneously generated examples designed by the student. In this case, the prepared data

set examples can be planned to demonstrate various aspects of the algorithm. In contrast,

students may be more involved when they create their own examples which may not include

some of the unusual or problem aspects of the algorithm.

The question of how best to present material is an age-old question to the pedagogue.

How, indeed, may one best transfer to others the concepts which are so clear to the teacher,

yet such unknown territory to the learner? Felder and Silverman [23] among others, stress

that students have many different ways of learning and that the learning and teaching styles
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of both student and teacher affect the results of the teaching process. One aspect of this is

the active/passive dimension which reflects whether students learn best by experimentation

or by developing theories. This issue is addressed by the two laboratory formats used in

the experiment.

9.2 Experiment on Teaching Style

Question: Does the use of an animation better present a complex algorithm than teacher

drawn sketches or transparencies?

Hypothesis: An animated algorithmic example is better than static drawings for

the understanding and application of the algorithm as measured by accuracy on a post-test.

Question: Is the lecture presentation of an algorithm enhanced by a laboratory

session?

Hypothesis: Students given a laboratory session with the algorithm demonstrate a

greater understanding of the algorithm as measured by performance on post-tests.

Question: What is the best format for a laboratory session using animated algo-

rithms? Is student involvement preferable to prepared examples which can be crafted to

present a wide range of possibilities and problems?

Hypothesis: Students who create their own algorithmic examples demonstrate a

better understanding of the algorithm as measured by performance on post-tests.

9.3 Subjects

Subjects were students at the Georgia Institute of Technology enrolled in CS1410, the first

programming course for Computer Science majors at the Institute. These students were

volunteers who received class credit for their participation. Sixty-two students participated

in the experiment.
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Table 9.1: Design of Experiment

Lecture Example
LABORATORY CONDITION Animation Prepared Slides
Lecture Only 15 1i
Lecture PassiveLab 7 9
plus Lab Active Lab 7 9

9.4 Design

The design was a 2 x 2 (nested 2) design as represented in Table 9.1. One variable was pre-

sentation of the lecture example, using Animation or Prepared Slides. The second variable

was Laboratory Session or Lecture Only. This design also encompassed a nested 2 level

factor under laboratory session where the variable of concern was Laboratory Type, either

Active or Passive.

The algorithm used was Kruskal's Minimum Spanning Tree Algorithm.

9.5 Materials

All students completed a consent form. They also completed a pre-test on knowledge of

graphical concepts. These materials can be found in the appendix.

A lecture describing the algorithm was given to all groups. Students in the Lec-

ture/Animation groups were stepped through an animated example of the Kruskal's Mini-

mum Spanning Tr:?e .Jporithm created by the Polka Algorithm Animation software. Stu-

dents in the Lecture/ Slides group were shown the same example graph by means of a series

of prepared transparencies. These transparencies were created from window-dumps of the

Polka example.

The Polka animation package allows the creation of animations which are similar to

the XTango animations but have additional features. The Polka animation package was

selected for this demonstration since it allows step-by-step control as well as sequential
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running of the animation. The example was prepared with the monochrome cues and

textual algorithmic steps suggested by the results of the previous experiments. A sample

frame from this package appears in Figure 9.1. For those students in the active and passive

laboratory groups, a prepared sheet of instructions explained how to access the XTango

animation of Kruskal's Minimum Spanning Tree Algorithm. The only difference in the two

handouts was that the Active group was instructed how to create a graph while the Passive

group was given the names of prepared data files.

The version of the animation used in this experiment was based on previous experi-

ments which indicated that a monochrome version of the algorithm with algorithmic steps

appearing as text was best as measured by performance on the post-test. This type of

animation was used for both the lecture example and for the animation laboratory.

All groups completed an on-line test requiring application or understanding of the

algorithm. This test appears in Appendix K. They also completed a free response test

(contained in Appendix L) on paper which was designed to require that they put into

words concepts relating to understanding the algorithm.

9.6 Procedure

Students were divided into 4 groups of approximately sixteen students each. The groups

were Lecture/Animation, Lecture/Slides, Lecture and Lab/Animation, Lecture and Lab/Slides.

Each laboratory section was divided into half Active and half Passive, providing sixteen

students in each group. Students were randomly assigned to a particular sub-group. Each

student completed a consent form and a pretest of graph knowledge. All students were

exposed to a lecture presentation of the algorithm, accompanied by either the Polka anima-

tion or by the prepared slides. For those in the laboratory condition, the XTango animation

followed. Students in the Active group created graphs and observed the workings of the

algorithm on those graphs. Students in the Passive group were given a list of prepared file

names and asked to observe the workings of the Kruskal MST Algorithm in the XTango

environment on those files. All students were allowed twelve minutes for the laboratory
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If no cycle Is created, add edge to spanning tree.

Figure 9.1: Kruskai's MST POLKA
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session. The twelve minute time limit was derived from the previous experiment where it

was determined that the average time a student spent experimenting with the graphs was

twelve minutes.

Students then completed two post-tests on the algorithm, one of which was an on-line

version composed of true/false and multiple choice questions. The second post-test required

short answers, stating of concepts or explanations, and application of the entire algorithm.

9.7 Analysis

Accuracy, the dependent variable, was measured on two instruments, an on-line fixed choice

test and a paper and pencil short answer test. This test was designed to measure behavioral

objectives based on concepts and applications of the algorithm. Analysis of variance was

used.

Analysis of the pre-test scores revealed no significant difference between groups of

students participating in the experiment. A 2 x 2 ANOVA was conducted. The two factors

in the first analysis were Lecture only versus Lecture/Lab and Polka Animation versus

Prepared Slides. The factor used in the second analysis was type of laboratory session,

Active or Passive.

Inspection of cell means for both the on-line and the free response test, which appear

in Table 9.2 and 9.3, indicated that the active and passive laboratory groups scored higher

than the no laboratory group. The active laboratory group had the highest scores on the

free-response test. Statistical analysis was then undertaken in order to determine which of

these differences were significant.

9.7.1 On-line test

The following results are based on a maximum possible of nineteen points. The questions

on the on-line test were either true/false or multiple-choice in format. This format allows

two techniques, recognition and guessing, which are not easily applied in free-answer style

questions.
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Table 9.2: Cell Means, On-line Test, Number Correct of Nineteen

Lecture Lecture
Example Example

LABORATORY CONDITION Polka Animation Prepared Slides
Lecture Only 11.87 11.8
Lecture Passive Lab 13.71 13.22

puLab Active Lab 13.83 13.89

Table 9.3: Cell Means, Free Response Test, Number Correct of Twenty-One

LECTURE EXAMPLE
LABORATORY CONDITION Polka Animation Prepared Slides
Lecture Only 14.47 16.13
Lecture Passive Lab 16.43 16.67
plus Lab Active Lab 18.14 17.89
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"Table 9.4: Cell Means, On-line Test: Lab/No-Lab, Number Correct of Nineteen

TEST RESULTS

No Lab 11.83

Animation Lab 13.45

Table 9.5: ANOVA On-line Test, Lab Condition

ANOVA RESULTS
Source Sum of D.F. Mean F Tail

Squres Square Prob.
Mean 9747.14 1 9747.14 684.75 0.000
Lab/No-Lab 39.93 1 39.93 2.80 0.099
Error 11 839.84 59 14.23 1 1

There was no significant difference between the two groups which have lectures ac-

companied by slides illustrating an example of the algorithm or lectures accompanied by an

animation example of the algorithm. This may be explained by the fact that both groups

were able to use visual techniques to supplement the algorithm and that either of these

methods was adequate for the purpose.

In a comparison of groups which received the laboratory session, results indicated

that students completing a laboratory session performed maginally better on the post-test

(F=2.80, d.f.1,59, p< 0.1) as measured by the on-line test.

9.7.2 Free Response Test

The following results are for the paper post-test requiring statement or application of con-

cepts. All questions are free-response in form. There were seven questions, each counted

as three points, for a maximum high score possible of twenty-one points. Questions were
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Table 9.6: Cell Means, Free response Test, Number Correct of Twenty-One

Cell Means
Slides Animation

No-Lab 16.1 14.5
Lab 17.3 17.3

Table 9.7: ANOVA Free-Form Test, Two-Factor

ANOVA RESULTS

Source Sum of D.F. Mean F Tail
I Squares Square Prob.

Mean 16311.93 1 16311.93 1179.76 0.00
Lab/No-Lab 60.35 1 60.35 4.36 0.04
Animation/Slides 10.57 1 10.57 0.76 0.39
Interaction 10.77 1 10.77 0.78 0.38
Error 801.93 58 13.83 1 1

designed to address basic concepts necessary for understanding of the algorithm in addition

to a complete demonstration of the working of the algorithm on a provided graph.

Results of this analysis indicated that students who completed a laboratory session

performed significantly better on the free-response post-test (F=4.36, d.f. 1,58, p< 0.05)

than those who did not. The amount of difference in this result indicates that student labo-

ratory participation is more effective for questions which require more conceptual knowledge

than questions which require recognition of the individual steps of the algorithm.

9.7.3 Laboratory Style-Active, Passive

These results led to further study of the differences among the conditions based upon the

type of laboratory session - active, passive, or none. Cell means indicated that those

students in the active condition had the highest scores on the free-response test. These
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Table 9.8: Cell Means for Three Lab Conditions, Number Correct of Twenty-One

Cell Means
No Laboratory 15.3
Passive 16.6
Active 18.0

Table 9.9: Results, Free-Form Test

ANOVA RESULTS
Means 15702.75099 1 15702.75099 1149.12 0.0000
Lab Type 77.31089 2 38.65544 2.83 0.0671
Error 806.23750 59 13.66504

results appear in Table 9.8. Analysis of Variance for the three possible lab conditions

indicated that laboratory condition was significant (F = 2.83, d.f. 2,59, p< 0.07), as shown

in Table 9.9. Pairwise t-test were performed to determine where the difference in condition

actually lay. The significant difference (p= 0.05) was discovered between the active and the

no laboratory condition.

9.8 Discussion

This experiment was interesting in several aspects. First, was the fact that the example

used did not make a significant difference in teaching the algorithm. This seems to suggest

that even though it is valuable to have a visual aid to concept formation, the animation,

while enjoyable to the student, does not provide added clarity over some other visual repre-

sentations. A second aspect of interest was that the advantage of the interactive laboratory

session was confirmed. As before, it was found that these students excelled when compared

to those in the passive laboratory condition as well as when compared to those students
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who did not participate in a laboratory session. Of special interest is the fact that the

intuitive advantage of the laboratory group was not statistically supported. Simply having

a laboratory session is not enough to improve performance; the issue of control and interac-

tion must also appear. This is a strong indication that one valuable us,.- of these animations

is to make them available to the students outside the classroom setting. This might be

done in either a closed laboratory or open laboratory setting where students would create

sample data sets and observe the workings of the algorithms to be learned on these sample

data sets. This is of special concern today when many computer science curricula are being

revised to conform to the 1991 ACM guidelines. These guidelines encourage the inclusion of

more closed laboratories in the beginning courses, but the design of these closed laboratories

is not always clear to the curriculum developer. This result suggests that student active

participation is a key issue in this design process.

A third feature of interest was that while those in the active laboratory performed

at a slightly higher level for both portions of the test, the difference was larger for the

free response test than for the on-line test. The nature of the two tests is important in

understanding this result. In general, the questions on the on-line test required recognition

of the correct response rather than generation of a response. These questions might be

described as being more on a procedural and operational level than on a conceptual level.

This speaks to the issue of what types of learning are most affected by the use of the

animations. A previous hypothesis was that these animations may aid in concept formation.

The results support that hypothesis.

9.8.1 Conclusions

The results of this experiment indicate that an advantage was shown for students receiving

the XTango animated algorithm laboratory session. This advantage was more marked

for those questions which required knowledge at a deeper level (the free-response test).

Questions on this test required drawing conclusions from the questions asked as well as

demonstrating a holistic version of the algorithm. Students who received the laboratory
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session also performed better on the on-line true/false or multiple choice questions, but not

at significant levels. This finding indicates that the animation session is more crucial for

those conceptual questions than for the more basic operational level of question.

However, study of the results for the two laboratory conditions indicated that stu-

dents who are in the active condition and create their own data sets for the algorithm

achieve higher scores than those who observe prepared data sets. This results suggest that

a study on the effect of student involvement in the learning process should be conducted.

However, no significant difference was observed for the animated algorithm over a

more traditional approach of prepared transparencies for example used with the lecture.
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CHAPTER X

CONCLUSION

10.1 Introduction

This series of experiments has covered several aspects of the use of animated algorithms

in teaching computer algorithms. The initial points of study were student preferences and

relationship to student performance. The results were applied to questions of design of

the animations and appropriate tasks for their use. Finally these animations were used in

actual teaching situations.

The first studies constructed the ideal format of an animation from a student learner

perspective. Students were given the opportunity to compare and rate varied data represen-

tations used in animations of sorting algorithms. They were also asked to give suggestions

for improving the animations. The student's suggestions focused on the representation of

the data (vertical bars when appropriate, labeled data values) and the representation of the

steps of the algorithm (major changes marked by text or by visual cues). The final study in

this preference series was based on the question of the ideal representation of data. It served

to measure whether preferences matched performance. This experiment considered factors

of representation and data set size. A moderate or medium sized data set was indicated

by the experimental results. However, no clear indication emerged that representation is

the key issue in design of these animations. These studies constituted a foundation for

the development of a second set of experiments which sought to resolve design issues. The

second set also checked if these students perceived ideal animation was also the animation

which led to fastest or most accurate learning.

The second set of studies dealt with design issues including representing data ele-

ments, labeling of data elements and student control of data sets, labeling of algorithmic
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actions by color cues, and including of textual explanations explaining steps of the algo-

rithm. The experiments allowed the development of guidelines as to which issues did, indeed,

affect performance. The first experiment in this series focused on the issue of labeling data

elements. Students were presented with animations which differed in the whether or not

the data elements were numerically labeled and in the representation of the data elements.

An experiment was also conducted which focused on the design issue of whether students

should prepare their own experimental data sets or use prepared data sets. The third design

experiment concerned two issues: (1) color compared to monochrome cues for algorithmic

actions in the algorithm, and (2) the presence or absence of textual explanatory cues for

conceptual steps of the algorithm. The third series of studies dealt with the question of ex-

actly what role the animations played in the learning process. Was it better to precede the

text by an animation? Should the animation come first instead? Secondary issues included

such questions as was the animation alone sufficient for learning? Was text required as a

help to building concepts through visual demonstration? What did the visual representation

add in addition to a new and interesting display? Results of these studies indicated that

the combination of text and animation was optimal, and that order of presentation (text

first, animation first) did not matter. Also of importance was the discovery that simple

algorithms may be taught from any of the three approaches - text, animation, text plus

animation - with relative success. However, teaching more complex algorithms seems to

require a multi-approach strategy where lecture or text is accompanied by an animation for

maximum results.

These experiments raised the question of exactly how is the animation to be used

in teaching. One possibility is for the animation to accompany a classroom lecture instead

of transparencies or sketches. Another option is to provide the animation in a laboratory

setting following a classroom presentation. With lab use of the animations, subjects were

either given prepared data sets or required to actively create their own data sets. The

experiment supported the use of the animation in an active laboratory setting.
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10.2 Results

This research examined several aspects of animation design. Results from this set of exper-

iments provide guidance to the design and use of animated algorithms. The experimental

results are summarized in Table 10.1.

10.2.1 Student Preference

The first s- "tion of this research dealt with determination of student preferences and their

correlation to performance. Student preferences were elicited in three ways:

"* One group of students was shown three data representations of Quick Sort: vertical

bars, horizontal bars, and dots. They were asked to rate these in a comparative

manner.

"* Twenty-one views of a sorting algorithm were created. These views differed by fill-

style, labeling, and representation. Students ranked the views in order of most liked.

" Subjects were taught Quick Sort by reading a hand-out and viewing an animation.

The animations varied in representation and data set size. Students were asked to

give suggestions for changes in design of the animations.

The results were that students preferred vertical bars to horizontal bars and both of

these to dots. They also desired numeric labeling of data elements and textual and visual

cues to indicate steps and actions of the algorithm. No statistical advantage of accuracy

was observed for any representation of the data in the sorting algorithms, so it was decided

to follow student preferences in design by using vertical bars for these applications. Medium

data sets were selected for use. These suggestions were also used to help guide the choice of

which design issues should be investigated. Three of these suggestions became the focus of

experiments: data labels, color emphasis of algorithmic points, and the addition of textual

explanations.
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Summary of Results

Table 10.1: Summary of Experimental Results

Focus 11 Algorithm Subjects I Results
Student Preference

Shape of Data Elements Quick Sort 32 Prefer bars

Student Preference Quick Sort 25 Prefer vertical bars
Fill, Shape, Labels Request labels
Shape and Quick Sort 36 No signifcant difference
Data Set Size Students prefer vertical

Design Issues ]
Labeled Data Elements Selection Sort 40 No accuracy effect of data labels

Quick Sort Keep labels to suit preference
Data Set Control Kruskal MST 17 Active control group

Quick Sort better accuracy
Kruskal p < .04

Color labels and Text Kruskal MST 36 Color detracts (online)
p < 0.02
Text steps help (paper)
p < 0.03

Teaching Use
Algorithm or Text First Kruskal MST 12 No significant difference

Selection Sort Trend indicates text first
Discovery Learning Selection Sort 9 Trend for text plus animation

Radix Sort
Lecture Example Type Kruskal MST 62 Lab is better
Addition of Lab (free-response)

p < 0.05
Active Lab is best
p<0.0 5

Marginally better with lab
(fixed response)
p< 0.1

Lecture Example No Significant Difference
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10.2.2 Design Issues

The next section of the research was to explore issues of design. The independent variables

were related to objective measures of student performance. A secondary focus of this portion

of the research was to consider suitable tasks and algorithms for the animations. The tasks

were sorting and finding the minimum spanning tree of a graph. Algorithms used included

Quick Sort, Radix Sort, Selection Sort, and Kruskal's Minimum Spanning Ttee Algorithm.

Three experiments were run.

The first experiment involved labeled and unlabeled data elements and two sorting

algorithms. Students were presented with animations of both algorithms, Quick Sort and

Selection Sort. Labeling was not found to have a significant effect on post-test accuracy. Be-

cause no effect of labeling was found, it was decided to continue to follow student preference

in using labeled data elements.

The second issue of design was whether data sets should be user designed or prepared

in advance by the animator or programmer. Subjects viewed &aimations of Kruskal's MST

and Quick Sort. Results indicated that students who were allowed to create their own data

sets achieved higher post-test scores for the Kruskal Minimum Spanning Tree algorithm.

Possibly the greater effects of this algorithm (as compared to the Quick Sort algorithm)

are due to a better natural visual mapping by the student of the graph algorithm to the

animation. The result of this experiment was to include the active creation of examples by

the user in the design process.

The last experiment in this series was a further study of the labeling issue. Although

students had suggested a need for labels, labels of data elements may not be the key to

algorithm understanding with an animation. Perhaps the items to be labeled are not the

data items, but instead the steps of the algorithm itself. This experiment focused on two

factors: labeling of algorithmic steps with text descriptions and labeling of actions on and

changes to the data structure with color and change cues. In this experiment, color was

found to be a distractor with regard to labeling of algorithmic actions. Text descriptions

added to the animation were found to be helpful in the animations. Thus, the results
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indicated that monochrome animations were preferable for the algorithmic actions while

text labels increased performance on questions which dealt with conceptual issues. In light

of these results, it was decided that future animations would include the textual algorithm

labels while avoiding use of color to label data structure changes.

10.2.3 Guidelines

The first and second series of design experiments led to several guidelines:

1. Use data representations which are similar to the user's previous experience - for

example, vertical bars are parallel in meaning to bar graphs or histograms.

2. Use labels on data items when this is practical. Students prefer this and it eliminates

any chance of confusion about the relative value of data elements.

3. Use medium data set sizes, large enough to show several aspects of the animation and

small enough not to overload the user's visual processing capacity.

4. Let students have control over animations, particularly the data. One of the advan-

tages of individualized use of computers in instruction is the feeling of control the

student has. This previously noted result is mirrored in the effects noted in these

experiments. This sense of control may contribute to a higher level of mental involve-

ment and to more memory cues being laid down for later access.

5. Choose animations which have a natural visual mapping of the underlying algorithm

to the animation. Results in the experiments were much stronger for the graph re-

lated algorithm. This suggests that while animations may be useful for many tasks

and domains, they are most useful where the algorithm possesses an natural visual

mapping.

6. Be careful in the use of color in the animation to provide cues for action steps of

the algorithm. The use of color can be problematic. In this research, color proved

to be distracting for learners. Color, while an attention getter, may contribute to

information overload.
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7. Use monochrome clues such as blinking, shading, or line-style changes (thin, dotted,

thick, double) instead of color changes. Such changes help students understand the

state of the data structure and the current progress of the algorithm without adding

additional distraction.

8. Include a high level text description of algorithmic steps in the animation. These

should be brief, active voice and include an indication of the current step. The use

of this technique allows visual and textual instructions to complement and reinforce

each other.

9. Use vertical bars when representing arrays of numeric data. Vertical bars are very

good for giving relative magnitude of data values.

10. Use labels to indicate data values. This is very good for discriminating between data

values which are extremely similar in magnitude.

11. Allow students to create example data sets. This provides a feeling of control. In

addition, the student can tailor the data set to answer questions as they arise.

10.2.4 Use in Teaching

The final segment of experimentation was in the area of how animations are to be used in

actually teaching algorithms. One pilot experiment addressed the question of whether text

or animation should be presented first. That is, is the animation better used as precursor

of the text explanation to come or as a reinforcement of what has already explained? An

experiment in which text first was contrasted with animation first indicated that there was

no significant difference in performance on the post-test. Due to the pilot nature of this

experiment, it was decided to select the text first approach which led to a non-significantly

higher average.

A follow-up study dealt with the question of whether animation should be used alone,

text alone, or text and animation together. It was interesting to observe iu the discovery

learning segment of this pilot study that any of the three approaches were sufficient for basic
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understanding of simple algorithms such as Radix Sort and Selection Sort. However, more

complex algorithms such as Quick Sort could not be understood from animation alone.

These studies were preparatory to a larger experiment using simulated classroom

conditions. Animations were designed using the guidelines previously established of textual

conceptual steps to accompany monochrome animations. Text was presented first, followed

by the animation, as suggested by the pilot studies. A laboratory session was made available

to some students in both the active and the passive mode. Results indicated that it was

not the extra laboratory session which improved scores on the post-test but rather the

interactive experience of self-created example data sets. Those in the interactive laboratory

group were found to have higher scores on the post-tests.

10.3 Guidelines for Using Algorithm Animations in Teach-
ing

There are also implications for the use of such animations in designing curricula. These

animations may best be used as part of a laboratory session concerning the algorithm.

With a set of animations available, a student would be able to select the animation he or

she needs. Such use of the animations should be in an active lab setting where each student

is able to create a data set, enter it, and observe the action of the algorithm on this data.

In summary the design of animations can be guided by the use of both student

preferences and performance results. Animations can be more effectively designed if the

guidelines given in this research are adapted to the algorithm at hand. Results also indicate

that user testing of new animations is advisable to assure that the particular algorithm

being used is represented in a manner that is clear to the potential users.

This work indicates that animations may be profitably used in teaching algorithms

if they are carefully designed. These animations have value in several areas, especially for

algorithms which provide a natural visual mapping.
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10.4 Implications

With the new curriculum for Computer Science (ACM/IEEE-CS 91) [61] comes a focus on

breadth of learning and exposure of the beginning computer science student to many varied

concepts and areas of computer science. Animations may well be used to enhance this

breadth exposure and to enable the student to grasp an understanding of the field through

an understanding of its underlying algorithmic processes.

Additionally, one of the stresses of the new curriculum approaches is more closed

laboratory sessions during the course of the computer science major. Animated algorithms

could well be employed in these closed laboratories to provide enhancement and reinforce-

ment to lecture and textbook material.

Because of the individual nature of use, these animations might also be made avail-

able for discovery or self-directed learning. This would allow the student to use the software

when learning a new algorithm or to reinforce some concepts which had been presented in

the textbook or in lecture. The flexibility of such a system presents many possibilities.

10.5 Future Work

A viable approach to the study of animated algorithms would be to continue to use these

animations in teaching computer algorithms. Additional factors to be considered might

be coordination of design details to particular algorithms. Another factor that would be

of interest is whether these animations should be made available in a structured closed

laboratory setting or as an open laboratory option available upon perceived need of the

student.

One area of study would be to design a library of animations and make it possible for

students to use and modify them on an individual basis. Observational data of how students

perceive that these animations could be improved would provide insight into design of new

animations.

New animations should be "field-tested" on students to ensure that the student

user makes the same or similar mappings to the conceptual base that are intended by the
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animation designer.

Since student involvement is a positive enforcement, another area of student involve-

ment would be animation creation. A student XT&ngo shell has been developed by Dr.

Stasko which allows students to easily create an animation to explore an algorithm and its

workings. Such a student shell would provide another level of involvement for the user.

A possible area of study would be how use of such a shell influences understanding of the

algorithms animated. An extension to this would be the ability to dynamically alter the an-

imation as it ran, perhaps changing the data representation or which steps of the algorithm

are visually illustrated.

Currently a tutorial package is being developed to incorporate these animations into

a Data Structures and Algorithm Analysis course. This tutorial will be modified to meet

the design and usage guidelines presented here and used in conjunction with such a course.

10.6 Conclusion

This line of research clearly demonstrates the value of empirical research in the design of
animations. Guidelines for the development and use of algorithm animations were derived.

Suggestions for integration of this technology into a learning situation have been justified.

Future work in this area holds great promise for the empowerment of the student. Devel-

opment in virtual reality input and output devices opens further vistas for exploration. It

is imperative that we grasp this opportunity to maximize the measurable benefits of the

research in order to aid students and generate further interest in the research community.
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APPENDIX A

CONSENT FORM

Variations of this consent form were used in all experiments described in this research.

Any variations were due to changes in the experimental task. All versions informed the

subject of his/her rights to confidentiality, the nature of the experimental task, the risk and

discomfort level involved, and the benefits of participation.
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CONSENT FORM

I volunteer to serve as a participant in a research experiment on user-computer in-
teraction conducted under the supervision of Dr. A. N. Badre. I realize that no report
from this study will contain data that can be identified with me individually; all informa-
tion relating to individual responses will be treated confidentially. I also realize that the
experiment session will have a duration of approximately one hour, and that I can quit the
experiment at any time without penalty. At the conclusion of the study I can receive a
report of the results if I want them.

During this experiment I will be asked to watch a demonstration of a computer algorithm.
At the end of the session, I will fill out questionnaires. The questionnaire will contain ques-
tions about the algorithm as well as about my experience with computers and programming.

I understand that the risk and discomfort will not exceed that of normal office work.

If I have any questions, I can call the experimenter or send e-mail, Andrea W. Lawrence,
Work 853-9394, Home 758-7709, alawrencOcc. I understand that I am free to deny any
answers to specific items or questions in the questionnaires and other materials.

Upon completion of my participation in this experiment, I will be given course credit as
agreed with my professors and department.

Print Name

Signature

Student number
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APPENDIX B

PREFERENCE SURVEY

The following questions were given to students at the Georgia State University in connection

with the first two studies involving student comparison and ranking of varied representations

of Quick Sort. The latter questions were also used later in the experiment at the Georgia

Institute of Technology which compared student performance on animations of the Quick

Sort algorithm which differed in data representation and data set size.

NAME

Circle the answer you feel best describes your opinion.

1. How familiar %ere you with the quick sort algorithm before this lesson?

Very Familiar Slightly Familiar Totally Unfamiliar

2. How well do you feel you now understand the quick sort algorithm presented to you?

Very Well Well OK Poorly Very Poorly

3. How well did you understand what each bar or dot represented?

Very Well W¥ell OK Somewhat Unclear Completely Unclear

4. Do you feel that the video represented the data well?

Very Well Well Neutral Poorly Very Poorly

5. What did you think about the speed of the animation?

Too Fast A Little Fast Just Right A Little Slow Much Too Slow

6. In your opinion, how was the length of the animation?

Much Too Short A Little Short Just Right Too Long Much Too Long
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Select the answer which you feel best completes the sentence.

1. You feel that use of the animation system you just saw
a) would help you in understanding algorithms.
b) would hinder you in understanding algorithms.

- c) would make no difference.

2. You would like to see similar demonstrations
a) frequently during a course.
b) occasionally during a course.

- c) never during a course.

3. Compared to the way you have been taught algorithms in the past, you think this
method to teach this material

a) much better.
b) somewhat better.
c) about the same.

- d) worse.
e) much worse.

4. How do you think the demonstration could be changed to increase your understanding
of the algorithm?

5. You have used or seen demonstrated an animation system like the one just presented

to you
a) very often.
b) often.
c) on occasion.
d) a few times.
e) never used one.
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APPENDIX C

QUICK SORT DESCRIPTION

The following description of Quick Sort was used in the preference studies at Georgia State

and in the first experiment at Georgia Tech which focused on data representation and data

set size. Quick Sort was also used in the studies focused on labeling data elements and data

set control.

Quick sort performs well in the average case, O(nlogn), although its worst case
performance is 0(n 2 ). It is a recursive method which takes advantage of the "divide and
conquer" approach, where a structure is divided into two pieces by some criterion, then the
two pieces are attacked separately.

Quick sort is a sorting technique in which the list is first partitioned into lower and upper
sublists for which all keys are, respectively, less than some pivot key or greater than the
pivot key.

Given a pivot value p, we must rearrange the entries of the array and compute the in-
dex pivotlocation so that when the pivot is at pivotlocation, all entries to its left have keys
less than p, and all entries to the right have larger keys. To allow for the possibility that
more than one item has key equal to p, we insist that the items to the left of pivotlocation
have keys strictly less than p, and the items to its right have keys greater than or equal to
p, as shown in the following diagram:

Starting Array

F -T----------------------------------I p1 I

------------------------------------

I I I
pivot low high

Array after one pass of Quick Sort

----- <p------ -P7-------- ;-p---------------I<p I p I >=pI

a--------------------------

pivotlocation
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To reorder the items this way, we must compare each key to the pivot. We start two
cursors moving: one will move rightward from the left end of the array, the other leftward
from the right end. The rightward-moving cursor (which we'll call 'down' or 'low') will keep
moving as long as the elements it scans are smaller than the pivot. The leftward-moving
cursor (which well call 'up' or 'high') will keep moving as long as the elements it scans are
greater than or equal to the pivot.

If the 'up' or 'high' cursor finds a value less than the pivot and the 'down' or 'low' cursor
finds one greater than the pivot, those two values are exchanged. Then the cursors are
started again from those points.

Eventually, the two cursors will meet. At the point where they meet, all values to the
left are guaranteed to be less than the pivot and all values to the right are guaranteed to be
greater than the pivot. We call that meeting point the 'partition point' or pivot location.
The pivot is swapped with the last smaller element. Then the process is repeated on the
left and right portions of the list.

The first item in the list may be chosen to be the pivot, however, any item in the list
may be the pivot.

Steps for Quick Sort:

1. Select a pivot element.

2. Start a pointer moving from the left, searching for a value larger than or equal to the
pivot.

3. Start a pointer moving from the right, searching for a value smaller than the pivot.

4. When these are located, swap the two elements.

5. Continue moving the pointers from left and right, searching for the larger/equal and
smaller elements.

6. Repeat the swap process.

7. The location where the pointers meet is called the partition point. Swap the pivot
with the last smaller element.

8. Divide the list into left partition, right partition, and pivot. Repeat the process on
each partition piece until each piece contains only one element.

9. Combine the pieces to obtain the sorted list.
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APPENDIX D

QUICK SORT POST-TEST

The following questionnaire is typical of those used with the Quick Sort algorithm. This

algorithm was used in several of the experiments, including Data Representation and Data

Set Size, Labeled Data Elements, and Data Set Control.

1. True or False: In each iteration of quick sort, only the pivot is exchanged with other
elements.

True
_False

2. Which elements are first to be exchanged? (Use 19 as the pivot.) 19 80 2 46 16 12 64
22 17 66 2735

19 and 80
19 and 17
80 and 17

-- _35 and 80

3. True or False: In Quick Sort, any numbers greater than the pivot will not be moved
during one iteration.

True
False

4. The effect of partitioning is to place:
_a__ numbers less than or equal to the pivot in left partition

all numbers in sorted order
half numbers in left partition
all numbers larger than pivot in sorted order

5. True or False: One result of the partitioning process is to place the partition element
in its final position.

True
False
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6. Given the list 12 5 9 18 2 23 13 10 5 7 31. What pair of numbers would be exchanged
second?

18 and 7
23 and 5
12 and 10

_.__none of the above

7. Quick Sort could be most easily programmed using:
-selection
recursion
iteration
none of the above

8. Which selection represents the first partitioning by Quick Sort? 8 6 12 20 2 5 47 14
Left 2 6 5 Pivot 8 Right 20 12 47 14
Left 2 5 6 Pivot 8 Right 12 14 20 47
Left 6 2 5 Pivot 8 Right 12 20 47 14

_ Left 6 5 2 Pivot 8 Right 47 20 14 12

9. The results of the first split of the list are Left 3 1 0 4 5 2 Partition 6 Right 8 9 11
20. Which two numbers will be the second pair exchanged ?

11 and 20
3 and 4
2 and 4

-3 and 2

10. Given the list K Q W A B E Y C D U M the results of the first partitioning by Quick
Sort are:

EDCAB-K-YWQUM
BDCAE-K-YQQUM
ABCDE-K-QWYUM
None of the abo;

11. The first partition of the list 4 5 9 3 6 11t 7 is 3 4 - 9 5 6 117. Which of these
is the next partition?

3 4 6 5 - 9 7 11
34756- 9- 11
34567-9-11
none of these

12. In Quick Sort, the main advantage is that:
The Divide and Conquer strategy allows work on segments of the data set
Only one number is moved during each iteration
All numbers greater than the pivot are placed in the left-hand partition

-All numbers of the data set are compared during each iteration
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APPENDIX E

PRETEST

The pretest below was given to students participating in the first experiments at Georgia

Institute of Technology. The focus of the questions was skills needed to read an algorithmic

description and apply the algorithm.

NAME

The following describes a procedure:

Procedure 1: To change a number:
1. It the number is zero then the answer is one
2. Otherwise, the answer is equal to the result of multiplying
the number by the result of applying this procedure to the
number minus one.

1. What is the result of change applied to 4?
-a) 64

b) 256
-C) 1

-d) 24

2. What is the result of change applied to 0?
a) 1
b)0

-c) -1
-d) 64
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Procedure 2: This method requires a list of numbers and two given numbers
1. The first given number is equal to one.
2. Search the list, one element at a time.
3. Whenever a member of the list is equal to the second given number,
increase the value of the first number given by one.
4. The result of Procedure 2 is the final value of the first number.

3. What is the result of Procedure 2 where the list consists of (12, 3, 2, 6, 3, 14,33) the
second number given is 3?

a •332

- c) 3
- d) 8

4. The purpose of Procedure 2 is
a) count the number of elements in the list

Sb) return the number of duplicates of the second number
c) return the number of duplicates of the second number plus one
d) return the last member of the list

Procedure 3:
1. Take a list with a certain number of members.
2. For each item of the list,

if the item is greater than the next item swap the two items.
3. Continue until the next to last item is compared to the last item.
4. Repeat this process; however. at each repetition
stop one item closer to the beginning of the list.
s. The final step of the procedure comes when only two members are

loft in the list. Compare them; swap if necessary; then end.

5. Which members of the list would be first to be exchanged ?

19 30 -2 15 108 s0 1

a) 19 and 30
b 50 and 1
c) -2 and 15

- d) 30 and -2
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APPENDIX F

SELECTION SORT

The following description of Selection Sort was used in some early studies at Georgia State

as well as in the Labeled Data Experiment of this sequence.

Information is often placed in alphabetical or numerical order to aid a reader in
locating a target value. Sorting has been widely studied by computer scientists and many
techniques are available. One such technique is called selection sort.

Consider an array with N elements, subscripted 1 .. N.

First find the smallest element in the array, and exchange it with the element in the first
position.

Next, exclude the first element from further consideration and repeat the process for el-
ements 2 .. N of the array. Thus the smallest of elements 2 .. N (and the second smallest
value in the entire array) will be placed at location 2.

This process continues until there are only two elements left to compared. Then elements
N - 1 and N of the array are considered for exchange.

This method is called selection sort because it works by repeatedly "selecting" the smallest
remaining element. The selection sort algorithm has an average Big 0 time of (N2 ).

1. Begin with the first element; it is the current smallest one. It is the one to use for
comparison.

2. Compare this element with each element in turn.

3. If a smaller element is found, make that the one for comparison.

4. Continue steps 2 and 3 to the end of the list.

5. When the end of the list is reached, swap the current smallest with the first element
of the list.

6. Starting from step 2, repeat the process beginning with the second element of the list,
comparing it with each later element in turn.

7. Swap the smallest at the end of that set of comparisons with the second element.

8. Repeat with each succeeding element until all elements have been placed and the list
is ordered.
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APPENDIX G

INTERACTION EXPERIMENT POST-TEST

One method of determining understanding of algorithms was to have the subject work

through a complete example of the algorithm. The fo~lowing examples were used in the

experiment focused on Data Set Control.

1. Show the steps in quick-sorting the given array:

(Use 9 as the initial pivot) 9 17 1 21 4 25 16

2. Show the steps in inding the Minimuma Spanning Tree of the given graph:

1. Of the two algorithms shown, you preferred:

- Quick Sort Kruskal's Minimum Spanning Tree

2. Which of the two animations did you find dearer in demonstrating the steps of the
algorithm?
- Quick Sort Kruska's MST - Both the same

3. What would you suggest as improvements to the animation?

4. What did you like most about the animations?
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APPENDIX H

TRANSFER TASK

The Knapsack Problem was used as the transfer task where the main task was Kruskal's

Minimum Spanning Tree. Both algorithms are based on greedy heuristics.

The Knapsack Problem has as its goal to fill, as nearly as possible, a knapsack which
will hold a given weight of objects, with maximum profit. Two pieces of information are
given about the objects- weight of each object and profit of each object. Each object may
be used only once. A whole object must be used, except for the last object. A fractional
portion of the last object may be taken to fill the knapsack. For example, if 2 pounds of
space are left in the knapsack, and the best object has weight 10, 2/10ths of this object
may be taken as the last step in solving the problem:

1. _ A knapsack has capacity 20. Objects are X1, X2, X3; profits P1 = 10, P2
= 5, P3 = 3; Weight X1 = 12, X2 = 15, X3 = 14. Which would you place in the
knapsack first?

2. __ How would you select the first object for the knapsack?
a) the object with the largest weight
b the object with the smallest weight
c) the object with the largest ratio of profit to weight
d) the object with the largest profit

3. I am filling a knapsack with capacity 30. 1 have 6 objects. How would you go about
selecting which object is first to go into the knapsack?

4. Why would it be difficult to solve this problem by trial and error? (That is, taking
each object as first, combined with all other possibilities until the best result is found.)

5. Show the steps in solving the following knapsack problem. Capacity = 20, n = 3
(pl,p2,p3) = (25, 24, 15)
(wl,w2,w3) = (18,15,10)
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APPENDIX I

SELECTION SORT QUESTIONNAIRE

This Selection Sort test is representative of the test used in the experiments for labeling

data elements and in the comparison study of animation, text, and animation plus text.

1. The identifying feature of the Selection Sort is that during each pass, - element(s)
is (are) put in the proper place.

_N one
At least one
Two or more

2. How many comparisons are required to Selection Sort a list of length 8?
8
16
28
64

3. Which elements would be first to be exchanged in Selection Sort of the list:
QWERTYUIOP?

YandI
Qand E

and I
__Y and P

4. The first pass (iteration) of a Selection Sort requires at most exchanges (where
n is the number of elements to be sorted).

____p_/n
ni

_n - 2

5. Which represents the result of two iterations of Selection Sort on the given list?
SORTEXAMPL
__AORTEXSMPL

AERTOXSMPL
___XTROESAMPL

_.none of the above



150

6. Given the list 26 24 3 17 25 13 60 47 1, which represents the list after four iterations
of Selection Sort?
-_-1 3 13 17 26 24 25 47 60

-3 17 24 25 26 13 60 47 1
1 3 13 17 25 24 60 47 26

._ none of the above

7. Which numbers will be the third pair of numbers compared in the first iteration of
Selection Sort given the list 3 4 2 1 7 6 8 5?
__3 and 1

2 and 1
7 and 6

_._._none of the above

8. True or False: In Selection Sort, an exchange must be made during each iteration
_ True

-False

9. Consider an already sorted list and an unsorted list, Selection Sort requires how many
comparisons?
_ More for the sorted list

More for the unsorted list
_ The same for both lists

10. The initial list is 13 12 15 6 10 18 2 4 11 1. Later it is 1 2 4 6 10 18 12 15 11 13.
How many iterations have been done?

-3
-4

either 3 or 4
5

11. Given the list X Q R A B C D B T, which pair of letters would be the second to be
exchanged?

Xand A
and B

_ B and C
__.__none of the above

12. Which list represents the numbers after 3 iterations of Selection Sort:
12 9 10 8 2 4 16 7 18?

-2 9 10 8 12 4 16 7 18
__._2 4 7 8 9 10 12 16 18
_ 2 4 10 8 12 9 16 7 18
_ 2 4 7 8 12 9 16 10 18
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APPENDIX J

RADIX SORT QUESTIONNAIRE

This questionnaire was used in the pilot study which contrasted text only, animation only,

and animation plus text. Questions were based on the radix sort.

1. How many sublists are needed for radix sort?
no certain number
9
10
5

2. The first time through the list, 342 goes into what sublist?
3
4
2
0

3. What order are the sublists recombined in?
_ ongest first

_ numerical order
shortest first

.____no special order

4. The third time through the master list, 19 goes into sublist
1

-- 9
_ _ 0

-3

5. Given the numbers 33 5 12 and 15, what will the master list look like after the first
time the list is recombined?

-5 12 :5 33
-.;33 12 15 5

12 33 5 15
12 5 15 33
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6. How many times is it necessary to go through the master list for the following list of
numbers? 123 19 9 2 8 101

-1
-2

6
3

7. What do rou do on the second pass though the master list with a single digit number
such as 3.
... put it in the sublist 3

put it in tha sublist 0
do not remove it from the master list

_...._none of the above

8. If the numbers are already sorted before the process begins, will they still be sorted
after the first time through the master list?

Yes
No

9. Given the following list, how will it appear after the master list is recombined the first
time? 12 4 5 14 144 9 22 39 29 7

12 22 4 14 144 5 7 9 39 29
4 5 7 9 12 14 22 29 39 144
4 5 7 12 14 22 9 39 29 144
12 22 29 39 4 14 144 5 7 9

10. During the third time through the master list, what will be in sublist 3? The original
list is : 123 333 12 133 42 15 9 88 103

103, 123, 133, 333
333
123, 103
133, 333
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APPENDIX K

KRUSKAL FIXED RESPONSE QUESTIONNAIRE
PRESENTATION STYLE EXPERIMENT

These questions made up the fixed-response on-line questionnaire. This questionnaire, or

portions of it, was used for the Presentation Style Experiment as well as the Active/Passive

Design Issue Experiment and the Text First or Algorithm First Experiment.

1. Edges AB, BC, and CA in figure 2 form a cycle
True

____False

2. In Kruskal Algorithm, the first step in finding the Minimum Spanning Tree is:
_____Sort the edges by weight
_ Select the two shortest edges
____Select the shortest edge from node 1

-None of the above

3. Consult the figure sheet. In graph 1, what edge will be first to be added to the shortest
path?

HG
AB

____either HG or AB
neither HG nor AB

4. Consult the figure sheet. In graph 1, which edge will be added to the Minimum span-
ning Tree second?
-GF

__HG
.CI

_____none of the above

5. Consult the figure sheet. In graph 1, if edges HG, IC, GF, CF, and AB are already
in the path, which edge will be added next?

-. CD
___HI
__None of the above
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6. Consult the figure sheet. In graph 2, which edge will be placed in the Minimum Span-
ning Tree first?

DF
__.AC

AB
___None of the above

7. Consult the figure sheet. In graph 2, if edges AC, CF, and DF are already in the path,
which edge will be next?

BC
---- AD

CD
none of the above

8. The time complexity of Kruskal's Algorithm seems to be: (let V = number of vertices,
E = number of edges)

o(V + E)
SO(E log E)

_O(E * V)
none of the above

9. In Kruskal's Algorithm the first edge selected for the minimum spanning tree is
_ Connected to the first vertex
____The edge of least weight
- The edge of least weight leading from the first vertex
_____none of the above

10. Kruskal's Algorithm selects at each step:
- The edge of least weight
--- _The edge of least weight which neighbors the last edge selected
___The edge of least weight which does not make a cycle _ None of the above

11. Consult the figure sheet. On graph 3, the minimum spanning tree begins with:
-- _ED

__GI
AB

_____either ED or GI

12. Consult the figure sheet. On graph 3, ED, GI, AB, DC, HC, and EI have been added
to the Minimum Spanning Tree. Which edge will be added next?
__GH
__BC

IH
none of the above

13. Consult the figure sheet. On graph 4, the correct Minimum Spanning Tree contains:
____vl-v7, v2-v7, v3-v4, v4-v7, v7-v3, v4-v5

vl-v7, v3-v4, v7-v2, v7-v3, v4-v5, v6-vl
_ vl-v7, v7-v2, v7-v4, v7-v5, v7-v6, v7-v3

None of the above
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14. Kruskal's Algorithm is advantageous over other Minimum Spanning Tree Algorithms
because

__.It always finds a least Spanning Tree.
_ It is faster than any other method.

It is more efficient in use of data structures.
None of the above

15. Consult the figure sheet. On graph 5, if V2-V3, V2-V4 are already in the minimum
Spanning Tree, the next edge to add is:

SV3-v4
____ýV2-V6

Sv4-V6
None of the above

16. Consult the figure sheet. On graph 5, the correct Minimum Spanning Tree contains:
v2-v3, v2-v4, v2-v6, v2-vl, v4-v5
vl-v2, v2-v3, v2-v4, v2-v6, v4-v5

____v2-v3, v2-v4, v3-v4, v2-v6, v4-v5
None of the above

17. Consult the figure sheet. On graph 2, the correct Minimum Spanning Tree contains:
AC,DF,DA, CB, FE
AC,DF,CF,CB,EF
AC,FD,CB,AB,CE
None of the above

18. Kruskal's Algorithm is the only possible way to find a Minimum Spanning Tree.
True
False

19. A minimum Spanning tree in a connected graph with 10 nodes has
- edges.

20
100

-9
10

20. How familiar were you with the Kruskal algorithm before this lesson?
.Very Familiar

-----..,Slightly Familiar
Totally Unfamiliar

21. How well do you feel you now understand the Kruskal algorithm presented to you?
_ Very Well
--- _Well

Poorly
-- __.Very Poorly



156

22. You feel that use of the animation system you just saw
would help you in understanding algorithms

_____would hinder you in understanding algorithms
--- would make no difference

23. You would like to see similar demonstrations
_-frequently during a course

-- occasionally during a course
____never during a course

24. Compared to the way you have been taught algorithms in the past, you think this
method to teach this material:
______better
____about the same

worse
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Figure K.5: Graph 5
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APPENDIX L

KRUSKAL FREE-RESPONSE QUESTIONNAIRE
PRESENTATION STYLE EXPERIMENT

The following questions were used as the free-response post-test for Kruskal's Minimum

Spanning Tree Algorithm. These questions were given following the computerized fixed-

choice segment of the post-test and were a paper handout rather than a computerized

sequence. These questions were used for several experiments including the experiment

in presentation style where the variables studied were type of example accompanying the

lecture and the type of laboratory session (no laboratory, passive laboratory, or active

laboratory).

Name

1. When would it be possible for either of two edges to be selected as the next edge of

the spanning tree?

2. List a combination of edges in the graph which form a cycle.

3. In the graph, edges 1, 2, and 3 have already been added to the MST tree. The next
shortest edge is edge 4. Can it be added? Why or why not?

4. Under what conditions would the next shortest edge not be added to the Minimum
Spanning Tree?

5. Describe, in your own words, the steps of the Kruskal Minimum Spanning Tree Algo-
rithm.

6. What, in your opinion, is the key part of the algorithm which guarantees the Spanning
Tree obtained will be minimal?

7. Apply Kruskal's MST Algorithm to the figure below:
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C

D

Figure L.l: Graph, Question 2

Figure L.2: Graph, Question 3
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